YugabyteDB (2.13.1.0-b60, 21121d69985fbf76aa6958d8f04a9bfa936293b5)

Coverage Report

Created: 2022-03-22 16:43

/Users/deen/code/yugabyte-db/build/debugcov-clang-dynamic-arm64-ninja/postgres_build/src/interfaces/libpq/md5.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 *  md5.c
3
 *
4
 *  Implements  the  MD5 Message-Digest Algorithm as specified in
5
 *  RFC  1321.  This  implementation  is a simple one, in that it
6
 *  needs  every  input  byte  to  be  buffered  before doing any
7
 *  calculations.  I  do  not  expect  this  file  to be used for
8
 *  general  purpose  MD5'ing  of large amounts of data, only for
9
 *  generating hashed passwords from limited input.
10
 *
11
 *  Sverre H. Huseby <sverrehu@online.no>
12
 *
13
 *  Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
14
 *  Portions Copyright (c) 1994, Regents of the University of California
15
 *
16
 * IDENTIFICATION
17
 *    src/common/md5.c
18
 */
19
20
#ifndef FRONTEND
21
#include "postgres.h"
22
#else
23
#include "postgres_fe.h"
24
#endif
25
26
#include "common/md5.h"
27
28
29
/*
30
 *  PRIVATE FUNCTIONS
31
 */
32
33
34
/*
35
 *  The returned array is allocated using malloc.  the caller should free it
36
 *  when it is no longer needed.
37
 */
38
static uint8 *
39
createPaddedCopyWithLength(const uint8 *b, uint32 *l)
40
1.00M
{
41
1.00M
  uint8    *ret;
42
1.00M
  uint32    q;
43
1.00M
  uint32    len,
44
1.00M
        newLen448;
45
1.00M
  uint32    len_high,
46
1.00M
        len_low;    /* 64-bit value split into 32-bit sections */
47
48
1.00M
  len = ((b == NULL) ? 
00
: *l);
49
1.00M
  newLen448 = len + 64 - (len % 64) - 8;
50
1.00M
  if (newLen448 <= len)
51
0
    newLen448 += 64;
52
53
1.00M
  *l = newLen448 + 8;
54
1.00M
  if ((ret = (uint8 *) malloc(sizeof(uint8) * *l)) == NULL)
55
0
    return NULL;
56
57
1.00M
  if (b != NULL)
58
1.00M
    memcpy(ret, b, sizeof(uint8) * len);
59
60
  /* pad */
61
1.00M
  ret[len] = 0x80;
62
39.0M
  for (q = len + 1; q < newLen448; 
q++38.0M
)
63
38.0M
    ret[q] = 0x00;
64
65
  /* append length as a 64 bit bitcount */
66
1.00M
  len_low = len;
67
  /* split into two 32-bit values */
68
  /* we only look at the bottom 32-bits */
69
1.00M
  len_high = len >> 29;
70
1.00M
  len_low <<= 3;
71
1.00M
  q = newLen448;
72
1.00M
  ret[q++] = (len_low & 0xff);
73
1.00M
  len_low >>= 8;
74
1.00M
  ret[q++] = (len_low & 0xff);
75
1.00M
  len_low >>= 8;
76
1.00M
  ret[q++] = (len_low & 0xff);
77
1.00M
  len_low >>= 8;
78
1.00M
  ret[q++] = (len_low & 0xff);
79
1.00M
  ret[q++] = (len_high & 0xff);
80
1.00M
  len_high >>= 8;
81
1.00M
  ret[q++] = (len_high & 0xff);
82
1.00M
  len_high >>= 8;
83
1.00M
  ret[q++] = (len_high & 0xff);
84
1.00M
  len_high >>= 8;
85
1.00M
  ret[q] = (len_high & 0xff);
86
87
1.00M
  return ret;
88
1.00M
}
89
90
#define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
91
#define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
92
#define H(x, y, z) ((x) ^ (y) ^ (z))
93
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
94
64.0M
#define ROT_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
95
96
static void
97
doTheRounds(uint32 X[16], uint32 state[4])
98
1.00M
{
99
1.00M
  uint32    a,
100
1.00M
        b,
101
1.00M
        c,
102
1.00M
        d;
103
104
1.00M
  a = state[0];
105
1.00M
  b = state[1];
106
1.00M
  c = state[2];
107
1.00M
  d = state[3];
108
109
  /* round 1 */
110
1.00M
  a = b + ROT_LEFT((a + F(b, c, d) + X[0] + 0xd76aa478), 7);  /* 1 */
111
1.00M
  d = a + ROT_LEFT((d + F(a, b, c) + X[1] + 0xe8c7b756), 12); /* 2 */
112
1.00M
  c = d + ROT_LEFT((c + F(d, a, b) + X[2] + 0x242070db), 17); /* 3 */
113
1.00M
  b = c + ROT_LEFT((b + F(c, d, a) + X[3] + 0xc1bdceee), 22); /* 4 */
114
1.00M
  a = b + ROT_LEFT((a + F(b, c, d) + X[4] + 0xf57c0faf), 7);  /* 5 */
115
1.00M
  d = a + ROT_LEFT((d + F(a, b, c) + X[5] + 0x4787c62a), 12); /* 6 */
116
1.00M
  c = d + ROT_LEFT((c + F(d, a, b) + X[6] + 0xa8304613), 17); /* 7 */
117
1.00M
  b = c + ROT_LEFT((b + F(c, d, a) + X[7] + 0xfd469501), 22); /* 8 */
118
1.00M
  a = b + ROT_LEFT((a + F(b, c, d) + X[8] + 0x698098d8), 7);  /* 9 */
119
1.00M
  d = a + ROT_LEFT((d + F(a, b, c) + X[9] + 0x8b44f7af), 12); /* 10 */
120
1.00M
  c = d + ROT_LEFT((c + F(d, a, b) + X[10] + 0xffff5bb1), 17);  /* 11 */
121
1.00M
  b = c + ROT_LEFT((b + F(c, d, a) + X[11] + 0x895cd7be), 22);  /* 12 */
122
1.00M
  a = b + ROT_LEFT((a + F(b, c, d) + X[12] + 0x6b901122), 7); /* 13 */
123
1.00M
  d = a + ROT_LEFT((d + F(a, b, c) + X[13] + 0xfd987193), 12);  /* 14 */
124
1.00M
  c = d + ROT_LEFT((c + F(d, a, b) + X[14] + 0xa679438e), 17);  /* 15 */
125
1.00M
  b = c + ROT_LEFT((b + F(c, d, a) + X[15] + 0x49b40821), 22);  /* 16 */
126
127
  /* round 2 */
128
1.00M
  a = b + ROT_LEFT((a + G(b, c, d) + X[1] + 0xf61e2562), 5);  /* 17 */
129
1.00M
  d = a + ROT_LEFT((d + G(a, b, c) + X[6] + 0xc040b340), 9);  /* 18 */
130
1.00M
  c = d + ROT_LEFT((c + G(d, a, b) + X[11] + 0x265e5a51), 14);  /* 19 */
131
1.00M
  b = c + ROT_LEFT((b + G(c, d, a) + X[0] + 0xe9b6c7aa), 20); /* 20 */
132
1.00M
  a = b + ROT_LEFT((a + G(b, c, d) + X[5] + 0xd62f105d), 5);  /* 21 */
133
1.00M
  d = a + ROT_LEFT((d + G(a, b, c) + X[10] + 0x02441453), 9); /* 22 */
134
1.00M
  c = d + ROT_LEFT((c + G(d, a, b) + X[15] + 0xd8a1e681), 14);  /* 23 */
135
1.00M
  b = c + ROT_LEFT((b + G(c, d, a) + X[4] + 0xe7d3fbc8), 20); /* 24 */
136
1.00M
  a = b + ROT_LEFT((a + G(b, c, d) + X[9] + 0x21e1cde6), 5);  /* 25 */
137
1.00M
  d = a + ROT_LEFT((d + G(a, b, c) + X[14] + 0xc33707d6), 9); /* 26 */
138
1.00M
  c = d + ROT_LEFT((c + G(d, a, b) + X[3] + 0xf4d50d87), 14); /* 27 */
139
1.00M
  b = c + ROT_LEFT((b + G(c, d, a) + X[8] + 0x455a14ed), 20); /* 28 */
140
1.00M
  a = b + ROT_LEFT((a + G(b, c, d) + X[13] + 0xa9e3e905), 5); /* 29 */
141
1.00M
  d = a + ROT_LEFT((d + G(a, b, c) + X[2] + 0xfcefa3f8), 9);  /* 30 */
142
1.00M
  c = d + ROT_LEFT((c + G(d, a, b) + X[7] + 0x676f02d9), 14); /* 31 */
143
1.00M
  b = c + ROT_LEFT((b + G(c, d, a) + X[12] + 0x8d2a4c8a), 20);  /* 32 */
144
145
  /* round 3 */
146
1.00M
  a = b + ROT_LEFT((a + H(b, c, d) + X[5] + 0xfffa3942), 4);  /* 33 */
147
1.00M
  d = a + ROT_LEFT((d + H(a, b, c) + X[8] + 0x8771f681), 11); /* 34 */
148
1.00M
  c = d + ROT_LEFT((c + H(d, a, b) + X[11] + 0x6d9d6122), 16);  /* 35 */
149
1.00M
  b = c + ROT_LEFT((b + H(c, d, a) + X[14] + 0xfde5380c), 23);  /* 36 */
150
1.00M
  a = b + ROT_LEFT((a + H(b, c, d) + X[1] + 0xa4beea44), 4);  /* 37 */
151
1.00M
  d = a + ROT_LEFT((d + H(a, b, c) + X[4] + 0x4bdecfa9), 11); /* 38 */
152
1.00M
  c = d + ROT_LEFT((c + H(d, a, b) + X[7] + 0xf6bb4b60), 16); /* 39 */
153
1.00M
  b = c + ROT_LEFT((b + H(c, d, a) + X[10] + 0xbebfbc70), 23);  /* 40 */
154
1.00M
  a = b + ROT_LEFT((a + H(b, c, d) + X[13] + 0x289b7ec6), 4); /* 41 */
155
1.00M
  d = a + ROT_LEFT((d + H(a, b, c) + X[0] + 0xeaa127fa), 11); /* 42 */
156
1.00M
  c = d + ROT_LEFT((c + H(d, a, b) + X[3] + 0xd4ef3085), 16); /* 43 */
157
1.00M
  b = c + ROT_LEFT((b + H(c, d, a) + X[6] + 0x04881d05), 23); /* 44 */
158
1.00M
  a = b + ROT_LEFT((a + H(b, c, d) + X[9] + 0xd9d4d039), 4);  /* 45 */
159
1.00M
  d = a + ROT_LEFT((d + H(a, b, c) + X[12] + 0xe6db99e5), 11);  /* 46 */
160
1.00M
  c = d + ROT_LEFT((c + H(d, a, b) + X[15] + 0x1fa27cf8), 16);  /* 47 */
161
1.00M
  b = c + ROT_LEFT((b + H(c, d, a) + X[2] + 0xc4ac5665), 23); /* 48 */
162
163
  /* round 4 */
164
1.00M
  a = b + ROT_LEFT((a + I(b, c, d) + X[0] + 0xf4292244), 6);  /* 49 */
165
1.00M
  d = a + ROT_LEFT((d + I(a, b, c) + X[7] + 0x432aff97), 10); /* 50 */
166
1.00M
  c = d + ROT_LEFT((c + I(d, a, b) + X[14] + 0xab9423a7), 15);  /* 51 */
167
1.00M
  b = c + ROT_LEFT((b + I(c, d, a) + X[5] + 0xfc93a039), 21); /* 52 */
168
1.00M
  a = b + ROT_LEFT((a + I(b, c, d) + X[12] + 0x655b59c3), 6); /* 53 */
169
1.00M
  d = a + ROT_LEFT((d + I(a, b, c) + X[3] + 0x8f0ccc92), 10); /* 54 */
170
1.00M
  c = d + ROT_LEFT((c + I(d, a, b) + X[10] + 0xffeff47d), 15);  /* 55 */
171
1.00M
  b = c + ROT_LEFT((b + I(c, d, a) + X[1] + 0x85845dd1), 21); /* 56 */
172
1.00M
  a = b + ROT_LEFT((a + I(b, c, d) + X[8] + 0x6fa87e4f), 6);  /* 57 */
173
1.00M
  d = a + ROT_LEFT((d + I(a, b, c) + X[15] + 0xfe2ce6e0), 10);  /* 58 */
174
1.00M
  c = d + ROT_LEFT((c + I(d, a, b) + X[6] + 0xa3014314), 15); /* 59 */
175
1.00M
  b = c + ROT_LEFT((b + I(c, d, a) + X[13] + 0x4e0811a1), 21);  /* 60 */
176
1.00M
  a = b + ROT_LEFT((a + I(b, c, d) + X[4] + 0xf7537e82), 6);  /* 61 */
177
1.00M
  d = a + ROT_LEFT((d + I(a, b, c) + X[11] + 0xbd3af235), 10);  /* 62 */
178
1.00M
  c = d + ROT_LEFT((c + I(d, a, b) + X[2] + 0x2ad7d2bb), 15); /* 63 */
179
1.00M
  b = c + ROT_LEFT((b + I(c, d, a) + X[9] + 0xeb86d391), 21); /* 64 */
180
181
1.00M
  state[0] += a;
182
1.00M
  state[1] += b;
183
1.00M
  state[2] += c;
184
1.00M
  state[3] += d;
185
1.00M
}
186
187
static int
188
calculateDigestFromBuffer(const uint8 *b, uint32 len, uint8 sum[16])
189
1.00M
{
190
1.00M
  register uint32 i,
191
1.00M
        j,
192
1.00M
        k,
193
1.00M
        newI;
194
1.00M
  uint32    l;
195
1.00M
  uint8    *input;
196
1.00M
  register uint32 *wbp;
197
1.00M
  uint32    workBuff[16],
198
1.00M
        state[4];
199
200
1.00M
  l = len;
201
202
1.00M
  state[0] = 0x67452301;
203
1.00M
  state[1] = 0xEFCDAB89;
204
1.00M
  state[2] = 0x98BADCFE;
205
1.00M
  state[3] = 0x10325476;
206
207
1.00M
  if ((input = createPaddedCopyWithLength(b, &l)) == NULL)
208
0
    return 0;
209
210
1.00M
  for (i = 0;;)
211
2.00M
  {
212
2.00M
    if ((newI = i + 16 * 4) > l)
213
1.00M
      break;
214
1.00M
    k = i + 3;
215
17.0M
    for (j = 0; j < 16; 
j++16.0M
)
216
16.0M
    {
217
16.0M
      wbp = (workBuff + j);
218
16.0M
      *wbp = input[k--];
219
16.0M
      *wbp <<= 8;
220
16.0M
      *wbp |= input[k--];
221
16.0M
      *wbp <<= 8;
222
16.0M
      *wbp |= input[k--];
223
16.0M
      *wbp <<= 8;
224
16.0M
      *wbp |= input[k];
225
16.0M
      k += 7;
226
16.0M
    }
227
1.00M
    doTheRounds(workBuff, state);
228
1.00M
    i = newI;
229
1.00M
  }
230
1.00M
  free(input);
231
232
1.00M
  j = 0;
233
5.00M
  for (i = 0; i < 4; 
i++4.00M
)
234
4.00M
  {
235
4.00M
    k = state[i];
236
4.00M
    sum[j++] = (k & 0xff);
237
4.00M
    k >>= 8;
238
4.00M
    sum[j++] = (k & 0xff);
239
4.00M
    k >>= 8;
240
4.00M
    sum[j++] = (k & 0xff);
241
4.00M
    k >>= 8;
242
4.00M
    sum[j++] = (k & 0xff);
243
4.00M
  }
244
1.00M
  return 1;
245
1.00M
}
246
247
static void
248
bytesToHex(uint8 b[16], char *s)
249
1.00M
{
250
1.00M
  static const char *hex = "0123456789abcdef";
251
1.00M
  int     q,
252
1.00M
        w;
253
254
17.0M
  for (q = 0, w = 0; q < 16; 
q++16.0M
)
255
16.0M
  {
256
16.0M
    s[w++] = hex[(b[q] >> 4) & 0x0F];
257
16.0M
    s[w++] = hex[b[q] & 0x0F];
258
16.0M
  }
259
1.00M
  s[w] = '\0';
260
1.00M
}
261
262
/*
263
 *  PUBLIC FUNCTIONS
264
 */
265
266
/*
267
 *  pg_md5_hash
268
 *
269
 *  Calculates the MD5 sum of the bytes in a buffer.
270
 *
271
 *  SYNOPSIS    #include "md5.h"
272
 *          int pg_md5_hash(const void *buff, size_t len, char *hexsum)
273
 *
274
 *  INPUT     buff    the buffer containing the bytes that you want
275
 *              the MD5 sum of.
276
 *          len   number of bytes in the buffer.
277
 *
278
 *  OUTPUT      hexsum  the MD5 sum as a '\0'-terminated string of
279
 *              hexadecimal digits.  an MD5 sum is 16 bytes long.
280
 *              each byte is represented by two hexadecimal
281
 *              characters.  you thus need to provide an array
282
 *              of 33 characters, including the trailing '\0'.
283
 *
284
 *  RETURNS     false on failure (out of memory for internal buffers) or
285
 *          true on success.
286
 *
287
 *  STANDARDS   MD5 is described in RFC 1321.
288
 *
289
 *  AUTHOR      Sverre H. Huseby <sverrehu@online.no>
290
 *
291
 */
292
bool
293
pg_md5_hash(const void *buff, size_t len, char *hexsum)
294
1.00M
{
295
1.00M
  uint8   sum[16];
296
297
1.00M
  if (!calculateDigestFromBuffer(buff, len, sum))
298
0
    return false;
299
300
1.00M
  bytesToHex(sum, hexsum);
301
1.00M
  return true;
302
1.00M
}
303
304
bool
305
pg_md5_binary(const void *buff, size_t len, void *outbuf)
306
0
{
307
0
  if (!calculateDigestFromBuffer(buff, len, outbuf))
308
0
    return false;
309
0
  return true;
310
0
}
311
312
313
/*
314
 * Computes MD5 checksum of "passwd" (a null-terminated string) followed
315
 * by "salt" (which need not be null-terminated).
316
 *
317
 * Output format is "md5" followed by a 32-hex-digit MD5 checksum.
318
 * Hence, the output buffer "buf" must be at least 36 bytes long.
319
 *
320
 * Returns true if okay, false on error (out of memory).
321
 */
322
bool
323
pg_md5_encrypt(const char *passwd, const char *salt, size_t salt_len,
324
         char *buf)
325
388
{
326
388
  size_t    passwd_len = strlen(passwd);
327
328
  /* +1 here is just to avoid risk of unportable malloc(0) */
329
388
  char     *crypt_buf = malloc(passwd_len + salt_len + 1);
330
388
  bool    ret;
331
332
388
  if (!crypt_buf)
333
0
    return false;
334
335
  /*
336
   * Place salt at the end because it may be known by users trying to crack
337
   * the MD5 output.
338
   */
339
388
  memcpy(crypt_buf, passwd, passwd_len);
340
388
  memcpy(crypt_buf + passwd_len, salt, salt_len);
341
342
388
  strcpy(buf, "md5");
343
388
  ret = pg_md5_hash(crypt_buf, passwd_len + salt_len, buf + 3);
344
345
388
  free(crypt_buf);
346
347
388
  return ret;
348
388
}