YugabyteDB (2.13.1.0-b60, 21121d69985fbf76aa6958d8f04a9bfa936293b5)

Coverage Report

Created: 2022-03-22 16:43

/Users/deen/code/yugabyte-db/src/postgres/src/backend/optimizer/path/indxpath.c
Line
Count
Source (jump to first uncovered line)
1
/*-------------------------------------------------------------------------
2
 *
3
 * indxpath.c
4
 *    Routines to determine which indexes are usable for scanning a
5
 *    given relation, and create Paths accordingly.
6
 *
7
 * Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
8
 * Portions Copyright (c) 1994, Regents of the University of California
9
 *
10
 *
11
 * IDENTIFICATION
12
 *    src/backend/optimizer/path/indxpath.c
13
 *
14
 *-------------------------------------------------------------------------
15
 */
16
#include "postgres.h"
17
18
#include <math.h>
19
20
#include "access/stratnum.h"
21
#include "access/sysattr.h"
22
#include "catalog/pg_am.h"
23
#include "catalog/pg_collation.h"
24
#include "catalog/pg_operator.h"
25
#include "catalog/pg_opfamily.h"
26
#include "catalog/pg_proc.h"
27
#include "catalog/pg_type.h"
28
#include "nodes/makefuncs.h"
29
#include "pg_yb_utils.h"
30
#include "optimizer/clauses.h"
31
#include "optimizer/cost.h"
32
#include "optimizer/pathnode.h"
33
#include "optimizer/paths.h"
34
#include "optimizer/predtest.h"
35
#include "optimizer/prep.h"
36
#include "optimizer/restrictinfo.h"
37
#include "optimizer/var.h"
38
#include "utils/builtins.h"
39
#include "utils/bytea.h"
40
#include "utils/lsyscache.h"
41
#include "utils/pg_locale.h"
42
#include "utils/rel.h"
43
#include "utils/selfuncs.h"
44
45
46
/* XXX see PartCollMatchesExprColl */
47
#define IndexCollMatchesExprColl(idxcollation, exprcollation) \
48
280k
  (
(idxcollation) == 148k
InvalidOid148k
||
(idxcollation) == (exprcollation)7.71k
)
49
50
/* Whether we are looking for plain indexscan, bitmap scan, or either */
51
typedef enum
52
{
53
  ST_INDEXSCAN,       /* must support amgettuple */
54
  ST_BITMAPSCAN,        /* must support amgetbitmap */
55
  ST_ANYSCAN          /* either is okay */
56
} ScanTypeControl;
57
58
/* Data structure for collecting qual clauses that match an index */
59
typedef struct
60
{
61
  bool    nonempty;   /* True if lists are not all empty */
62
  /* Lists of RestrictInfos, one per index column */
63
  List     *indexclauses[INDEX_MAX_KEYS];
64
} IndexClauseSet;
65
66
/* Per-path data used within choose_bitmap_and() */
67
typedef struct
68
{
69
  Path     *path;     /* IndexPath, BitmapAndPath, or BitmapOrPath */
70
  List     *quals;      /* the WHERE clauses it uses */
71
  List     *preds;      /* predicates of its partial index(es) */
72
  Bitmapset  *clauseids;    /* quals+preds represented as a bitmapset */
73
  bool    unclassifiable; /* has too many quals+preds to process? */
74
} PathClauseUsage;
75
76
/* Callback argument for ec_member_matches_indexcol */
77
typedef struct
78
{
79
  IndexOptInfo *index;    /* index we're considering */
80
  int     indexcol;   /* index column we want to match to */
81
} ec_member_matches_arg;
82
83
84
static void consider_index_join_clauses(PlannerInfo *root, RelOptInfo *rel,
85
              IndexOptInfo *index,
86
              IndexClauseSet *rclauseset,
87
              IndexClauseSet *jclauseset,
88
              IndexClauseSet *eclauseset,
89
              List **bitindexpaths);
90
static void consider_index_join_outer_rels(PlannerInfo *root, RelOptInfo *rel,
91
                 IndexOptInfo *index,
92
                 IndexClauseSet *rclauseset,
93
                 IndexClauseSet *jclauseset,
94
                 IndexClauseSet *eclauseset,
95
                 List **bitindexpaths,
96
                 List *indexjoinclauses,
97
                 int considered_clauses,
98
                 List **considered_relids);
99
static void get_join_index_paths(PlannerInfo *root, RelOptInfo *rel,
100
           IndexOptInfo *index,
101
           IndexClauseSet *rclauseset,
102
           IndexClauseSet *jclauseset,
103
           IndexClauseSet *eclauseset,
104
           List **bitindexpaths,
105
           Relids relids,
106
           List **considered_relids);
107
static bool eclass_already_used(EquivalenceClass *parent_ec, Relids oldrelids,
108
          List *indexjoinclauses);
109
static bool bms_equal_any(Relids relids, List *relids_list);
110
static void get_index_paths(PlannerInfo *root, RelOptInfo *rel,
111
        IndexOptInfo *index, IndexClauseSet *clauses,
112
        List **bitindexpaths);
113
static List *build_index_paths(PlannerInfo *root, RelOptInfo *rel,
114
          IndexOptInfo *index, IndexClauseSet *clauses,
115
          bool useful_predicate,
116
          ScanTypeControl scantype,
117
          bool *skip_nonnative_saop,
118
          bool *skip_lower_saop);
119
static List *build_paths_for_OR(PlannerInfo *root, RelOptInfo *rel,
120
           List *clauses, List *other_clauses);
121
static List *generate_bitmap_or_paths(PlannerInfo *root, RelOptInfo *rel,
122
             List *clauses, List *other_clauses);
123
static Path *choose_bitmap_and(PlannerInfo *root, RelOptInfo *rel,
124
          List *paths);
125
static int  path_usage_comparator(const void *a, const void *b);
126
static Cost bitmap_scan_cost_est(PlannerInfo *root, RelOptInfo *rel,
127
           Path *ipath);
128
static Cost bitmap_and_cost_est(PlannerInfo *root, RelOptInfo *rel,
129
          List *paths);
130
static PathClauseUsage *classify_index_clause_usage(Path *path,
131
              List **clauselist);
132
static void find_indexpath_quals(Path *bitmapqual, List **quals, List **preds);
133
static int  find_list_position(Node *node, List **nodelist);
134
static bool check_index_only(RelOptInfo *rel, IndexOptInfo *index);
135
static double get_loop_count(PlannerInfo *root, Index cur_relid, Relids outer_relids);
136
static double adjust_rowcount_for_semijoins(PlannerInfo *root,
137
                Index cur_relid,
138
                Index outer_relid,
139
                double rowcount);
140
static double approximate_joinrel_size(PlannerInfo *root, Relids relids);
141
static void match_restriction_clauses_to_index(RelOptInfo *rel,
142
                   IndexOptInfo *index,
143
                   IndexClauseSet *clauseset);
144
static void match_join_clauses_to_index(PlannerInfo *root,
145
              RelOptInfo *rel, IndexOptInfo *index,
146
              IndexClauseSet *clauseset,
147
              List **joinorclauses);
148
static void match_eclass_clauses_to_index(PlannerInfo *root,
149
                IndexOptInfo *index,
150
                IndexClauseSet *clauseset);
151
static void match_clauses_to_index(IndexOptInfo *index,
152
             List *clauses,
153
             IndexClauseSet *clauseset);
154
static void match_clause_to_index(IndexOptInfo *index,
155
            RestrictInfo *rinfo,
156
            IndexClauseSet *clauseset);
157
static bool match_clause_to_indexcol(IndexOptInfo *index,
158
             int indexcol,
159
             RestrictInfo *rinfo);
160
static bool is_indexable_operator(Oid expr_op, Oid opfamily,
161
            bool indexkey_on_left);
162
static bool match_rowcompare_to_indexcol(IndexOptInfo *index,
163
               int indexcol,
164
               Oid opfamily,
165
               Oid idxcollation,
166
               RowCompareExpr *clause);
167
static void match_pathkeys_to_index(IndexOptInfo *index, List *pathkeys,
168
            List **orderby_clauses_p,
169
            List **clause_columns_p);
170
static Expr *match_clause_to_ordering_op(IndexOptInfo *index,
171
              int indexcol, Expr *clause, Oid pk_opfamily);
172
static bool ec_member_matches_indexcol(PlannerInfo *root, RelOptInfo *rel,
173
               EquivalenceClass *ec, EquivalenceMember *em,
174
               void *arg);
175
static bool match_boolean_index_clause(Node *clause, int indexcol,
176
               IndexOptInfo *index);
177
static bool match_special_index_operator(Expr *clause,
178
               Oid opfamily, Oid idxcollation,
179
               bool indexkey_on_left);
180
static Expr *expand_boolean_index_clause(Node *clause, int indexcol,
181
              IndexOptInfo *index);
182
static List *expand_indexqual_opclause(RestrictInfo *rinfo,
183
              Oid opfamily, Oid idxcollation);
184
static RestrictInfo *expand_indexqual_rowcompare(RestrictInfo *rinfo,
185
              IndexOptInfo *index,
186
              int indexcol);
187
static List *prefix_quals(Node *leftop, Oid opfamily, Oid collation,
188
       Const *prefix, Pattern_Prefix_Status pstatus);
189
static List *network_prefix_quals(Node *leftop, Oid expr_op, Oid opfamily,
190
           Datum rightop);
191
static Datum string_to_datum(const char *str, Oid datatype);
192
static Const *string_to_const(const char *str, Oid datatype);
193
194
195
/*
196
 * create_index_paths()
197
 *    Generate all interesting index paths for the given relation.
198
 *    Candidate paths are added to the rel's pathlist (using add_path).
199
 *
200
 * To be considered for an index scan, an index must match one or more
201
 * restriction clauses or join clauses from the query's qual condition,
202
 * or match the query's ORDER BY condition, or have a predicate that
203
 * matches the query's qual condition.
204
 *
205
 * There are two basic kinds of index scans.  A "plain" index scan uses
206
 * only restriction clauses (possibly none at all) in its indexqual,
207
 * so it can be applied in any context.  A "parameterized" index scan uses
208
 * join clauses (plus restriction clauses, if available) in its indexqual.
209
 * When joining such a scan to one of the relations supplying the other
210
 * variables used in its indexqual, the parameterized scan must appear as
211
 * the inner relation of a nestloop join; it can't be used on the outer side,
212
 * nor in a merge or hash join.  In that context, values for the other rels'
213
 * attributes are available and fixed during any one scan of the indexpath.
214
 *
215
 * An IndexPath is generated and submitted to add_path() for each plain or
216
 * parameterized index scan this routine deems potentially interesting for
217
 * the current query.
218
 *
219
 * 'rel' is the relation for which we want to generate index paths
220
 *
221
 * Note: check_index_predicates() must have been run previously for this rel.
222
 *
223
 * Note: in cases involving LATERAL references in the relation's tlist, it's
224
 * possible that rel->lateral_relids is nonempty.  Currently, we include
225
 * lateral_relids into the parameterization reported for each path, but don't
226
 * take it into account otherwise.  The fact that any such rels *must* be
227
 * available as parameter sources perhaps should influence our choices of
228
 * index quals ... but for now, it doesn't seem worth troubling over.
229
 * In particular, comments below about "unparameterized" paths should be read
230
 * as meaning "unparameterized so far as the indexquals are concerned".
231
 */
232
void
233
create_index_paths(PlannerInfo *root, RelOptInfo *rel)
234
160k
{
235
160k
  List     *indexpaths;
236
160k
  List     *bitindexpaths;
237
160k
  List     *bitjoinpaths;
238
160k
  List     *joinorclauses;
239
160k
  IndexClauseSet rclauseset;
240
160k
  IndexClauseSet jclauseset;
241
160k
  IndexClauseSet eclauseset;
242
160k
  ListCell   *lc;
243
244
  /* Skip the whole mess if no indexes */
245
160k
  if (rel->indexlist == NIL)
246
18.2k
    return;
247
248
  /* Bitmap paths are collected and then dealt with at the end */
249
142k
  bitindexpaths = bitjoinpaths = joinorclauses = NIL;
250
251
  /* Examine each index in turn */
252
142k
  foreach(lc, rel->indexlist)
253
220k
  {
254
220k
    IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
255
256
    /* Protect limited-size array in IndexClauseSets */
257
220k
    Assert(index->ncolumns <= INDEX_MAX_KEYS);
258
259
    /*
260
     * Ignore partial indexes that do not match the query.
261
     * (generate_bitmap_or_paths() might be able to do something with
262
     * them, but that's of no concern here.)
263
     */
264
220k
    if (index->indpred != NIL && 
!index->predOK321
)
265
274
      continue;
266
267
    /*
268
     * Identify the restriction clauses that can match the index.
269
     */
270
220k
    MemSet(&rclauseset, 0, sizeof(rclauseset));
271
220k
    match_restriction_clauses_to_index(rel, index, &rclauseset);
272
273
    /*
274
     * Build index paths from the restriction clauses.  These will be
275
     * non-parameterized paths.  Plain paths go directly to add_path(),
276
     * bitmap paths are added to bitindexpaths to be handled below.
277
     */
278
220k
    get_index_paths(root, rel, index, &rclauseset,
279
220k
            &bitindexpaths);
280
281
    /*
282
     * Identify the join clauses that can match the index.  For the moment
283
     * we keep them separate from the restriction clauses.  Note that this
284
     * step finds only "loose" join clauses that have not been merged into
285
     * EquivalenceClasses.  Also, collect join OR clauses for later.
286
     */
287
220k
    MemSet(&jclauseset, 0, sizeof(jclauseset));
288
220k
    match_join_clauses_to_index(root, rel, index,
289
220k
                  &jclauseset, &joinorclauses);
290
291
    /*
292
     * Look for EquivalenceClasses that can generate joinclauses matching
293
     * the index.
294
     */
295
220k
    MemSet(&eclauseset, 0, sizeof(eclauseset));
296
220k
    match_eclass_clauses_to_index(root, index,
297
220k
                    &eclauseset);
298
299
    /*
300
     * If we found any plain or eclass join clauses, build parameterized
301
     * index paths using them.
302
     */
303
220k
    if (jclauseset.nonempty || 
eclauseset.nonempty218k
)
304
10.6k
      consider_index_join_clauses(root, rel, index,
305
10.6k
                    &rclauseset,
306
10.6k
                    &jclauseset,
307
10.6k
                    &eclauseset,
308
10.6k
                    &bitjoinpaths);
309
220k
  }
310
311
  /*
312
   * Generate BitmapOrPaths for any suitable OR-clauses present in the
313
   * restriction list.  Add these to bitindexpaths.
314
   */
315
142k
  indexpaths = generate_bitmap_or_paths(root, rel,
316
142k
                      rel->baserestrictinfo, NIL);
317
142k
  bitindexpaths = list_concat(bitindexpaths, indexpaths);
318
319
  /*
320
   * Likewise, generate BitmapOrPaths for any suitable OR-clauses present in
321
   * the joinclause list.  Add these to bitjoinpaths.
322
   */
323
142k
  indexpaths = generate_bitmap_or_paths(root, rel,
324
142k
                      joinorclauses, rel->baserestrictinfo);
325
142k
  bitjoinpaths = list_concat(bitjoinpaths, indexpaths);
326
327
  /*
328
   * If we found anything usable, generate a BitmapHeapPath for the most
329
   * promising combination of restriction bitmap index paths.  Note there
330
   * will be only one such path no matter how many indexes exist.  This
331
   * should be sufficient since there's basically only one figure of merit
332
   * (total cost) for such a path.
333
   */
334
142k
  if (bitindexpaths != NIL)
335
223
  {
336
223
    Path     *bitmapqual;
337
223
    BitmapHeapPath *bpath;
338
339
223
    bitmapqual = choose_bitmap_and(root, rel, bitindexpaths);
340
223
    bpath = create_bitmap_heap_path(root, rel, bitmapqual,
341
223
                    rel->lateral_relids, 1.0, 0);
342
223
    add_path(rel, (Path *) bpath);
343
344
    /* create a partial bitmap heap path */
345
223
    if (rel->consider_parallel && 
rel->lateral_relids == NULL0
)
346
0
      create_partial_bitmap_paths(root, rel, bitmapqual);
347
223
  }
348
349
  /*
350
   * Likewise, if we found anything usable, generate BitmapHeapPaths for the
351
   * most promising combinations of join bitmap index paths.  Our strategy
352
   * is to generate one such path for each distinct parameterization seen
353
   * among the available bitmap index paths.  This may look pretty
354
   * expensive, but usually there won't be very many distinct
355
   * parameterizations.  (This logic is quite similar to that in
356
   * consider_index_join_clauses, but we're working with whole paths not
357
   * individual clauses.)
358
   */
359
142k
  if (bitjoinpaths != NIL)
360
18
  {
361
18
    List     *all_path_outers;
362
18
    ListCell   *lc;
363
364
    /* Identify each distinct parameterization seen in bitjoinpaths */
365
18
    all_path_outers = NIL;
366
18
    foreach(lc, bitjoinpaths)
367
36
    {
368
36
      Path     *path = (Path *) lfirst(lc);
369
36
      Relids    required_outer = PATH_REQ_OUTER(path);
370
371
36
      if (!bms_equal_any(required_outer, all_path_outers))
372
18
        all_path_outers = lappend(all_path_outers, required_outer);
373
36
    }
374
375
    /* Now, for each distinct parameterization set ... */
376
18
    foreach(lc, all_path_outers)
377
18
    {
378
18
      Relids    max_outers = (Relids) lfirst(lc);
379
18
      List     *this_path_set;
380
18
      Path     *bitmapqual;
381
18
      Relids    required_outer;
382
18
      double    loop_count;
383
18
      BitmapHeapPath *bpath;
384
18
      ListCell   *lcp;
385
386
      /* Identify all the bitmap join paths needing no more than that */
387
18
      this_path_set = NIL;
388
18
      foreach(lcp, bitjoinpaths)
389
36
      {
390
36
        Path     *path = (Path *) lfirst(lcp);
391
392
36
        if (bms_is_subset(PATH_REQ_OUTER(path), max_outers))
393
36
          this_path_set = lappend(this_path_set, path);
394
36
      }
395
396
      /*
397
       * Add in restriction bitmap paths, since they can be used
398
       * together with any join paths.
399
       */
400
18
      this_path_set = list_concat(this_path_set, bitindexpaths);
401
402
      /* Select best AND combination for this parameterization */
403
18
      bitmapqual = choose_bitmap_and(root, rel, this_path_set);
404
405
      /* And push that path into the mix */
406
18
      required_outer = PATH_REQ_OUTER(bitmapqual);
407
18
      loop_count = get_loop_count(root, rel->relid, required_outer);
408
18
      bpath = create_bitmap_heap_path(root, rel, bitmapqual,
409
18
                      required_outer, loop_count, 0);
410
18
      add_path(rel, (Path *) bpath);
411
18
    }
412
18
  }
413
142k
}
414
415
/*
416
 * consider_index_join_clauses
417
 *    Given sets of join clauses for an index, decide which parameterized
418
 *    index paths to build.
419
 *
420
 * Plain indexpaths are sent directly to add_path, while potential
421
 * bitmap indexpaths are added to *bitindexpaths for later processing.
422
 *
423
 * 'rel' is the index's heap relation
424
 * 'index' is the index for which we want to generate paths
425
 * 'rclauseset' is the collection of indexable restriction clauses
426
 * 'jclauseset' is the collection of indexable simple join clauses
427
 * 'eclauseset' is the collection of indexable clauses from EquivalenceClasses
428
 * '*bitindexpaths' is the list to add bitmap paths to
429
 */
430
static void
431
consider_index_join_clauses(PlannerInfo *root, RelOptInfo *rel,
432
              IndexOptInfo *index,
433
              IndexClauseSet *rclauseset,
434
              IndexClauseSet *jclauseset,
435
              IndexClauseSet *eclauseset,
436
              List **bitindexpaths)
437
10.6k
{
438
10.6k
  int     considered_clauses = 0;
439
10.6k
  List     *considered_relids = NIL;
440
10.6k
  int     indexcol;
441
442
  /*
443
   * The strategy here is to identify every potentially useful set of outer
444
   * rels that can provide indexable join clauses.  For each such set,
445
   * select all the join clauses available from those outer rels, add on all
446
   * the indexable restriction clauses, and generate plain and/or bitmap
447
   * index paths for that set of clauses.  This is based on the assumption
448
   * that it's always better to apply a clause as an indexqual than as a
449
   * filter (qpqual); which is where an available clause would end up being
450
   * applied if we omit it from the indexquals.
451
   *
452
   * This looks expensive, but in most practical cases there won't be very
453
   * many distinct sets of outer rels to consider.  As a safety valve when
454
   * that's not true, we use a heuristic: limit the number of outer rel sets
455
   * considered to a multiple of the number of clauses considered.  (We'll
456
   * always consider using each individual join clause, though.)
457
   *
458
   * For simplicity in selecting relevant clauses, we represent each set of
459
   * outer rels as a maximum set of clause_relids --- that is, the indexed
460
   * relation itself is also included in the relids set.  considered_relids
461
   * lists all relids sets we've already tried.
462
   */
463
24.0k
  for (indexcol = 0; indexcol < index->ncolumns; 
indexcol++13.3k
)
464
13.3k
  {
465
    /* Consider each applicable simple join clause */
466
13.3k
    considered_clauses += list_length(jclauseset->indexclauses[indexcol]);
467
13.3k
    consider_index_join_outer_rels(root, rel, index,
468
13.3k
                     rclauseset, jclauseset, eclauseset,
469
13.3k
                     bitindexpaths,
470
13.3k
                     jclauseset->indexclauses[indexcol],
471
13.3k
                     considered_clauses,
472
13.3k
                     &considered_relids);
473
    /* Consider each applicable eclass join clause */
474
13.3k
    considered_clauses += list_length(eclauseset->indexclauses[indexcol]);
475
13.3k
    consider_index_join_outer_rels(root, rel, index,
476
13.3k
                     rclauseset, jclauseset, eclauseset,
477
13.3k
                     bitindexpaths,
478
13.3k
                     eclauseset->indexclauses[indexcol],
479
13.3k
                     considered_clauses,
480
13.3k
                     &considered_relids);
481
13.3k
  }
482
10.6k
}
483
484
/*
485
 * consider_index_join_outer_rels
486
 *    Generate parameterized paths based on clause relids in the clause list.
487
 *
488
 * Workhorse for consider_index_join_clauses; see notes therein for rationale.
489
 *
490
 * 'rel', 'index', 'rclauseset', 'jclauseset', 'eclauseset', and
491
 *    'bitindexpaths' as above
492
 * 'indexjoinclauses' is a list of RestrictInfos for join clauses
493
 * 'considered_clauses' is the total number of clauses considered (so far)
494
 * '*considered_relids' is a list of all relids sets already considered
495
 */
496
static void
497
consider_index_join_outer_rels(PlannerInfo *root, RelOptInfo *rel,
498
                 IndexOptInfo *index,
499
                 IndexClauseSet *rclauseset,
500
                 IndexClauseSet *jclauseset,
501
                 IndexClauseSet *eclauseset,
502
                 List **bitindexpaths,
503
                 List *indexjoinclauses,
504
                 int considered_clauses,
505
                 List **considered_relids)
506
26.6k
{
507
26.6k
  ListCell   *lc;
508
509
  /* Examine relids of each joinclause in the given list */
510
26.6k
  foreach(lc, indexjoinclauses)
511
11.4k
  {
512
11.4k
    RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
513
11.4k
    Relids    clause_relids = rinfo->clause_relids;
514
11.4k
    ListCell   *lc2;
515
516
    /* If we already tried its relids set, no need to do so again */
517
11.4k
    if (bms_equal_any(clause_relids, *considered_relids))
518
245
      continue;
519
520
    /*
521
     * Generate the union of this clause's relids set with each
522
     * previously-tried set.  This ensures we try this clause along with
523
     * every interesting subset of previous clauses.  However, to avoid
524
     * exponential growth of planning time when there are many clauses,
525
     * limit the number of relid sets accepted to 10 * considered_clauses.
526
     *
527
     * Note: get_join_index_paths adds entries to *considered_relids, but
528
     * it prepends them to the list, so that we won't visit new entries
529
     * during the inner foreach loop.  No real harm would be done if we
530
     * did, since the subset check would reject them; but it would waste
531
     * some cycles.
532
     */
533
11.2k
    foreach(lc2, *considered_relids)
534
832
    {
535
832
      Relids    oldrelids = (Relids) lfirst(lc2);
536
537
      /*
538
       * If either is a subset of the other, no new set is possible.
539
       * This isn't a complete test for redundancy, but it's easy and
540
       * cheap.  get_join_index_paths will check more carefully if we
541
       * already generated the same relids set.
542
       */
543
832
      if (bms_subset_compare(clause_relids, oldrelids) != BMS_DIFFERENT)
544
0
        continue;
545
546
      /*
547
       * If this clause was derived from an equivalence class, the
548
       * clause list may contain other clauses derived from the same
549
       * eclass.  We should not consider that combining this clause with
550
       * one of those clauses generates a usefully different
551
       * parameterization; so skip if any clause derived from the same
552
       * eclass would already have been included when using oldrelids.
553
       */
554
832
      if (rinfo->parent_ec &&
555
832
        eclass_already_used(rinfo->parent_ec, oldrelids,
556
824
                  indexjoinclauses))
557
812
        continue;
558
559
      /*
560
       * If the number of relid sets considered exceeds our heuristic
561
       * limit, stop considering combinations of clauses.  We'll still
562
       * consider the current clause alone, though (below this loop).
563
       */
564
20
      if (list_length(*considered_relids) >= 10 * considered_clauses)
565
0
        break;
566
567
      /* OK, try the union set */
568
20
      get_join_index_paths(root, rel, index,
569
20
                 rclauseset, jclauseset, eclauseset,
570
20
                 bitindexpaths,
571
20
                 bms_union(clause_relids, oldrelids),
572
20
                 considered_relids);
573
20
    }
574
575
    /* Also try this set of relids by itself */
576
11.2k
    get_join_index_paths(root, rel, index,
577
11.2k
               rclauseset, jclauseset, eclauseset,
578
11.2k
               bitindexpaths,
579
11.2k
               clause_relids,
580
11.2k
               considered_relids);
581
11.2k
  }
582
26.6k
}
583
584
/*
585
 * get_join_index_paths
586
 *    Generate index paths using clauses from the specified outer relations.
587
 *    In addition to generating paths, relids is added to *considered_relids
588
 *    if not already present.
589
 *
590
 * Workhorse for consider_index_join_clauses; see notes therein for rationale.
591
 *
592
 * 'rel', 'index', 'rclauseset', 'jclauseset', 'eclauseset',
593
 *    'bitindexpaths', 'considered_relids' as above
594
 * 'relids' is the current set of relids to consider (the target rel plus
595
 *    one or more outer rels)
596
 */
597
static void
598
get_join_index_paths(PlannerInfo *root, RelOptInfo *rel,
599
           IndexOptInfo *index,
600
           IndexClauseSet *rclauseset,
601
           IndexClauseSet *jclauseset,
602
           IndexClauseSet *eclauseset,
603
           List **bitindexpaths,
604
           Relids relids,
605
           List **considered_relids)
606
11.2k
{
607
11.2k
  IndexClauseSet clauseset;
608
11.2k
  int     indexcol;
609
610
  /* If we already considered this relids set, don't repeat the work */
611
11.2k
  if (bms_equal_any(relids, *considered_relids))
612
0
    return;
613
614
  /* Identify indexclauses usable with this relids set */
615
11.2k
  MemSet(&clauseset, 0, sizeof(clauseset));
616
617
25.2k
  for (indexcol = 0; indexcol < index->ncolumns; 
indexcol++13.9k
)
618
13.9k
  {
619
13.9k
    ListCell   *lc;
620
621
    /* First find applicable simple join clauses */
622
13.9k
    foreach(lc, jclauseset->indexclauses[indexcol])
623
1.81k
    {
624
1.81k
      RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
625
626
1.81k
      if (bms_is_subset(rinfo->clause_relids, relids))
627
1.78k
        clauseset.indexclauses[indexcol] =
628
1.78k
          lappend(clauseset.indexclauses[indexcol], rinfo);
629
1.81k
    }
630
631
    /*
632
     * Add applicable eclass join clauses.  The clauses generated for each
633
     * column are redundant (cf generate_implied_equalities_for_column),
634
     * so we need at most one.  This is the only exception to the general
635
     * rule of using all available index clauses.
636
     */
637
13.9k
    foreach(lc, eclauseset->indexclauses[indexcol])
638
10.5k
    {
639
10.5k
      RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
640
641
10.5k
      if (bms_is_subset(rinfo->clause_relids, relids))
642
9.73k
      {
643
9.73k
        clauseset.indexclauses[indexcol] =
644
9.73k
          lappend(clauseset.indexclauses[indexcol], rinfo);
645
9.73k
        break;
646
9.73k
      }
647
10.5k
    }
648
649
    /* Add restriction clauses (this is nondestructive to rclauseset) */
650
13.9k
    clauseset.indexclauses[indexcol] =
651
13.9k
      list_concat(clauseset.indexclauses[indexcol],
652
13.9k
            rclauseset->indexclauses[indexcol]);
653
654
13.9k
    if (clauseset.indexclauses[indexcol] != NIL)
655
12.4k
      clauseset.nonempty = true;
656
13.9k
  }
657
658
  /* We should have found something, else caller passed silly relids */
659
11.2k
  Assert(clauseset.nonempty);
660
661
  /* Build index path(s) using the collected set of clauses */
662
11.2k
  get_index_paths(root, rel, index, &clauseset, bitindexpaths);
663
664
  /*
665
   * Remember we considered paths for this set of relids.  We use lcons not
666
   * lappend to avoid confusing the loop in consider_index_join_outer_rels.
667
   */
668
11.2k
  *considered_relids = lcons(relids, *considered_relids);
669
11.2k
}
670
671
/*
672
 * eclass_already_used
673
 *    True if any join clause usable with oldrelids was generated from
674
 *    the specified equivalence class.
675
 */
676
static bool
677
eclass_already_used(EquivalenceClass *parent_ec, Relids oldrelids,
678
          List *indexjoinclauses)
679
824
{
680
824
  ListCell   *lc;
681
682
824
  foreach(lc, indexjoinclauses)
683
1.16k
  {
684
1.16k
    RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
685
686
1.16k
    if (rinfo->parent_ec == parent_ec &&
687
1.16k
      bms_is_subset(rinfo->clause_relids, oldrelids))
688
812
      return true;
689
1.16k
  }
690
12
  return false;
691
824
}
692
693
/*
694
 * bms_equal_any
695
 *    True if relids is bms_equal to any member of relids_list
696
 *
697
 * Perhaps this should be in bitmapset.c someday.
698
 */
699
static bool
700
bms_equal_any(Relids relids, List *relids_list)
701
22.7k
{
702
22.7k
  ListCell   *lc;
703
704
22.7k
  foreach(lc, relids_list)
705
1.96k
  {
706
1.96k
    if (bms_equal(relids, (Relids) lfirst(lc)))
707
263
      return true;
708
1.96k
  }
709
22.5k
  return false;
710
22.7k
}
711
712
713
/*
714
 * get_index_paths
715
 *    Given an index and a set of index clauses for it, construct IndexPaths.
716
 *
717
 * Plain indexpaths are sent directly to add_path, while potential
718
 * bitmap indexpaths are added to *bitindexpaths for later processing.
719
 *
720
 * This is a fairly simple frontend to build_index_paths().  Its reason for
721
 * existence is mainly to handle ScalarArrayOpExpr quals properly.  If the
722
 * index AM supports them natively, we should just include them in simple
723
 * index paths.  If not, we should exclude them while building simple index
724
 * paths, and then make a separate attempt to include them in bitmap paths.
725
 * Furthermore, we should consider excluding lower-order ScalarArrayOpExpr
726
 * quals so as to create ordered paths.
727
 */
728
static void
729
get_index_paths(PlannerInfo *root, RelOptInfo *rel,
730
        IndexOptInfo *index, IndexClauseSet *clauses,
731
        List **bitindexpaths)
732
231k
{
733
231k
  List     *indexpaths;
734
231k
  bool    skip_nonnative_saop = false;
735
231k
  bool    skip_lower_saop = false;
736
231k
  ListCell   *lc;
737
738
  /*
739
   * Build simple index paths using the clauses.  Allow ScalarArrayOpExpr
740
   * clauses only if the index AM supports them natively, and skip any such
741
   * clauses for index columns after the first (so that we produce ordered
742
   * paths if possible).
743
   */
744
231k
  indexpaths = build_index_paths(root, rel,
745
231k
                   index, clauses,
746
231k
                   index->predOK,
747
231k
                   ST_ANYSCAN,
748
231k
                   &skip_nonnative_saop,
749
231k
                   &skip_lower_saop);
750
751
  /*
752
   * If we skipped any lower-order ScalarArrayOpExprs on an index with an AM
753
   * that supports them, then try again including those clauses.  This will
754
   * produce paths with more selectivity but no ordering.
755
   */
756
231k
  if (skip_lower_saop)
757
336
  {
758
336
    indexpaths = list_concat(indexpaths,
759
336
                 build_index_paths(root, rel,
760
336
                           index, clauses,
761
336
                           index->predOK,
762
336
                           ST_ANYSCAN,
763
336
                           &skip_nonnative_saop,
764
336
                           NULL));
765
336
  }
766
767
  /*
768
   * Submit all the ones that can form plain IndexScan plans to add_path. (A
769
   * plain IndexPath can represent either a plain IndexScan or an
770
   * IndexOnlyScan, but for our purposes here that distinction does not
771
   * matter.  However, some of the indexes might support only bitmap scans,
772
   * and those we mustn't submit to add_path here.)
773
   *
774
   * Also, pick out the ones that are usable as bitmap scans.  For that, we
775
   * must discard indexes that don't support bitmap scans, and we also are
776
   * only interested in paths that have some selectivity; we should discard
777
   * anything that was generated solely for ordering purposes.
778
   */
779
231k
  foreach(lc, indexpaths)
780
124k
  {
781
124k
    IndexPath  *ipath = (IndexPath *) lfirst(lc);
782
783
124k
    if (index->amhasgettuple)
784
124k
      add_path(rel, (Path *) ipath);
785
786
124k
    if (index->amhasgetbitmap &&
787
124k
      
(283
ipath->path.pathkeys == 283
NIL283
||
788
283
       
ipath->indexselectivity < 1.064
))
789
245
      *bitindexpaths = lappend(*bitindexpaths, ipath);
790
124k
  }
791
792
  /*
793
   * If there were ScalarArrayOpExpr clauses that the index can't handle
794
   * natively, generate bitmap scan paths relying on executor-managed
795
   * ScalarArrayOpExpr.
796
   */
797
231k
  if (skip_nonnative_saop)
798
1
  {
799
1
    indexpaths = build_index_paths(root, rel,
800
1
                     index, clauses,
801
1
                     false,
802
1
                     ST_BITMAPSCAN,
803
1
                     NULL,
804
1
                     NULL);
805
1
    *bitindexpaths = list_concat(*bitindexpaths, indexpaths);
806
1
  }
807
231k
}
808
809
/*
810
 * build_index_paths
811
 *    Given an index and a set of index clauses for it, construct zero
812
 *    or more IndexPaths. It also constructs zero or more partial IndexPaths.
813
 *
814
 * We return a list of paths because (1) this routine checks some cases
815
 * that should cause us to not generate any IndexPath, and (2) in some
816
 * cases we want to consider both a forward and a backward scan, so as
817
 * to obtain both sort orders.  Note that the paths are just returned
818
 * to the caller and not immediately fed to add_path().
819
 *
820
 * At top level, useful_predicate should be exactly the index's predOK flag
821
 * (ie, true if it has a predicate that was proven from the restriction
822
 * clauses).  When working on an arm of an OR clause, useful_predicate
823
 * should be true if the predicate required the current OR list to be proven.
824
 * Note that this routine should never be called at all if the index has an
825
 * unprovable predicate.
826
 *
827
 * scantype indicates whether we want to create plain indexscans, bitmap
828
 * indexscans, or both.  When it's ST_BITMAPSCAN, we will not consider
829
 * index ordering while deciding if a Path is worth generating.
830
 *
831
 * If skip_nonnative_saop is non-NULL, we ignore ScalarArrayOpExpr clauses
832
 * unless the index AM supports them directly, and we set *skip_nonnative_saop
833
 * to true if we found any such clauses (caller must initialize the variable
834
 * to false).  If it's NULL, we do not ignore ScalarArrayOpExpr clauses.
835
 *
836
 * If skip_lower_saop is non-NULL, we ignore ScalarArrayOpExpr clauses for
837
 * non-first index columns, and we set *skip_lower_saop to true if we found
838
 * any such clauses (caller must initialize the variable to false).  If it's
839
 * NULL, we do not ignore non-first ScalarArrayOpExpr clauses, but they will
840
 * result in considering the scan's output to be unordered.
841
 *
842
 * 'rel' is the index's heap relation
843
 * 'index' is the index for which we want to generate paths
844
 * 'clauses' is the collection of indexable clauses (RestrictInfo nodes)
845
 * 'useful_predicate' indicates whether the index has a useful predicate
846
 * 'scantype' indicates whether we need plain or bitmap scan support
847
 * 'skip_nonnative_saop' indicates whether to accept SAOP if index AM doesn't
848
 * 'skip_lower_saop' indicates whether to accept non-first-column SAOP
849
 */
850
static List *
851
build_index_paths(PlannerInfo *root, RelOptInfo *rel,
852
          IndexOptInfo *index, IndexClauseSet *clauses,
853
          bool useful_predicate,
854
          ScanTypeControl scantype,
855
          bool *skip_nonnative_saop,
856
          bool *skip_lower_saop)
857
231k
{
858
231k
  List     *result = NIL;
859
231k
  IndexPath  *ipath;
860
231k
  List     *index_clauses;
861
231k
  List     *clause_columns;
862
231k
  Relids    outer_relids;
863
231k
  double    loop_count;
864
231k
  List     *orderbyclauses;
865
231k
  List     *orderbyclausecols;
866
231k
  List     *index_pathkeys;
867
231k
  List     *useful_pathkeys;
868
231k
  bool    found_lower_saop_clause;
869
231k
  bool    pathkeys_possibly_useful;
870
231k
  bool    index_is_ordered;
871
231k
  bool    index_only_scan;
872
231k
  int     indexcol;
873
874
  /*
875
   * Check that index supports the desired scan type(s)
876
   */
877
231k
  switch (scantype)
878
231k
  {
879
0
    case ST_INDEXSCAN:
880
0
      if (!index->amhasgettuple)
881
0
        return NIL;
882
0
      break;
883
29
    case ST_BITMAPSCAN:
884
29
      if (!index->amhasgetbitmap)
885
1
        return NIL;
886
28
      break;
887
231k
    case ST_ANYSCAN:
888
      /* either or both are OK */
889
231k
      break;
890
231k
  }
891
892
  /*
893
   * 1. Collect the index clauses into a single list.
894
   *
895
   * We build a list of RestrictInfo nodes for clauses to be used with this
896
   * index, along with an integer list of the index column numbers (zero
897
   * based) that each clause should be used with.  The clauses are ordered
898
   * by index key, so that the column numbers form a nondecreasing sequence.
899
   * (This order is depended on by btree and possibly other places.)  The
900
   * lists can be empty, if the index AM allows that.
901
   *
902
   * found_lower_saop_clause is set true if we accept a ScalarArrayOpExpr
903
   * index clause for a non-first index column.  This prevents us from
904
   * assuming that the scan result is ordered.  (Actually, the result is
905
   * still ordered if there are equality constraints for all earlier
906
   * columns, but it seems too expensive and non-modular for this code to be
907
   * aware of that refinement.)
908
   *
909
   * We also build a Relids set showing which outer rels are required by the
910
   * selected clauses.  Any lateral_relids are included in that, but not
911
   * otherwise accounted for.
912
   */
913
231k
  index_clauses = NIL;
914
231k
  clause_columns = NIL;
915
231k
  found_lower_saop_clause = false;
916
231k
  outer_relids = bms_copy(rel->lateral_relids);
917
551k
  for (indexcol = 0; indexcol < index->ncolumns; 
indexcol++320k
)
918
320k
  {
919
320k
    ListCell   *lc;
920
921
320k
    foreach(lc, clauses->indexclauses[indexcol])
922
120k
    {
923
120k
      RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
924
925
120k
      if (IsA(rinfo->clause, ScalarArrayOpExpr))
926
55.1k
      {
927
55.1k
        if (!index->amsearcharray)
928
1
        {
929
1
          if (skip_nonnative_saop)
930
1
          {
931
            /* Ignore because not supported by index */
932
1
            *skip_nonnative_saop = true;
933
1
            continue;
934
1
          }
935
          /* Caller had better intend this only for bitmap scan */
936
0
          Assert(scantype == ST_BITMAPSCAN);
937
0
        }
938
55.1k
        if (indexcol > 0)
939
1.13k
        {
940
1.13k
          if (skip_lower_saop)
941
568
          {
942
            /* Caller doesn't want to lose index ordering */
943
568
            *skip_lower_saop = true;
944
568
            continue;
945
568
          }
946
568
          found_lower_saop_clause = true;
947
568
        }
948
55.1k
      }
949
119k
      index_clauses = lappend(index_clauses, rinfo);
950
119k
      clause_columns = lappend_int(clause_columns, indexcol);
951
119k
      outer_relids = bms_add_members(outer_relids,
952
119k
                       rinfo->clause_relids);
953
119k
    }
954
955
    /*
956
     * If no clauses match the first index column, check for amoptionalkey
957
     * restriction.  We can't generate a scan over an index with
958
     * amoptionalkey = false unless there's at least one index clause.
959
     * (When working on columns after the first, this test cannot fail. It
960
     * is always okay for columns after the first to not have any
961
     * clauses.)
962
     */
963
320k
    if (index_clauses == NIL && 
!index->amoptionalkey134k
)
964
5
      return NIL;
965
320k
  }
966
967
  /* We do not want the index's rel itself listed in outer_relids */
968
231k
  outer_relids = bms_del_member(outer_relids, rel->relid);
969
  /* Enforce convention that outer_relids is exactly NULL if empty */
970
231k
  if (bms_is_empty(outer_relids))
971
220k
    outer_relids = NULL;
972
973
  /* Compute loop_count for cost estimation purposes */
974
231k
  loop_count = get_loop_count(root, rel->relid, outer_relids);
975
976
  /*
977
   * 2. Compute pathkeys describing index's ordering, if any, then see how
978
   * many of them are actually useful for this query.  This is not relevant
979
   * if we are only trying to build bitmap indexscans, nor if we have to
980
   * assume the scan is unordered.
981
   */
982
231k
  pathkeys_possibly_useful = (scantype != ST_BITMAPSCAN &&
983
231k
                
!found_lower_saop_clause231k
&&
984
231k
                
has_useful_pathkeys(root, rel)231k
);
985
231k
  index_is_ordered = (index->sortopfamily != NULL);
986
231k
  if (index_is_ordered && 
pathkeys_possibly_useful230k
)
987
40.0k
  {
988
40.0k
    index_pathkeys = build_index_pathkeys(root, index,
989
40.0k
                        ForwardScanDirection);
990
40.0k
    useful_pathkeys = truncate_useless_pathkeys(root, rel,
991
40.0k
                          index_pathkeys);
992
40.0k
    orderbyclauses = NIL;
993
40.0k
    orderbyclausecols = NIL;
994
40.0k
  }
995
191k
  else if (index->amcanorderbyop && 
pathkeys_possibly_useful3
)
996
3
  {
997
    /* see if we can generate ordering operators for query_pathkeys */
998
3
    match_pathkeys_to_index(index, root->query_pathkeys,
999
3
                &orderbyclauses,
1000
3
                &orderbyclausecols);
1001
3
    if (orderbyclauses)
1002
0
      useful_pathkeys = root->query_pathkeys;
1003
3
    else
1004
3
      useful_pathkeys = NIL;
1005
3
  }
1006
191k
  else
1007
191k
  {
1008
191k
    useful_pathkeys = NIL;
1009
191k
    orderbyclauses = NIL;
1010
191k
    orderbyclausecols = NIL;
1011
191k
  }
1012
1013
  /*
1014
   * 3. Check if an index-only scan is possible.  If we're not building
1015
   * plain indexscans, this isn't relevant since bitmap scans don't support
1016
   * index data retrieval anyway.
1017
   */
1018
231k
  index_only_scan = (scantype != ST_BITMAPSCAN &&
1019
231k
             
check_index_only(rel, index)231k
);
1020
1021
  /*
1022
   * 4. Generate an indexscan path if there are relevant restriction clauses
1023
   * in the current clauses, OR the index ordering is potentially useful for
1024
   * later merging or final output ordering, OR the index has a useful
1025
   * predicate, OR an index-only scan is possible.
1026
   */
1027
231k
  if (index_clauses != NIL || 
useful_pathkeys != 118k
NIL118k
||
useful_predicate113k
||
1028
231k
    
index_only_scan113k
)
1029
124k
  {
1030
124k
    ipath = create_index_path(root, index,
1031
124k
                  index_clauses,
1032
124k
                  clause_columns,
1033
124k
                  orderbyclauses,
1034
124k
                  orderbyclausecols,
1035
124k
                  useful_pathkeys,
1036
124k
                  index_is_ordered ?
1037
124k
                  ForwardScanDirection :
1038
124k
                  
NoMovementScanDirection387
,
1039
124k
                  index_only_scan,
1040
124k
                  outer_relids,
1041
124k
                  loop_count,
1042
124k
                  false);
1043
124k
    result = lappend(result, ipath);
1044
1045
    /*
1046
     * If appropriate, consider parallel index scan.  We don't allow
1047
     * parallel index scan for bitmap index scans.
1048
     */
1049
124k
    if (index->amcanparallel &&
1050
124k
      
rel->consider_parallel230
&&
outer_relids == NULL0
&&
1051
124k
      
scantype != ST_BITMAPSCAN0
)
1052
0
    {
1053
0
      ipath = create_index_path(root, index,
1054
0
                    index_clauses,
1055
0
                    clause_columns,
1056
0
                    orderbyclauses,
1057
0
                    orderbyclausecols,
1058
0
                    useful_pathkeys,
1059
0
                    index_is_ordered ?
1060
0
                    ForwardScanDirection :
1061
0
                    NoMovementScanDirection,
1062
0
                    index_only_scan,
1063
0
                    outer_relids,
1064
0
                    loop_count,
1065
0
                    true);
1066
1067
      /*
1068
       * if, after costing the path, we find that it's not worth using
1069
       * parallel workers, just free it.
1070
       */
1071
0
      if (ipath->path.parallel_workers > 0)
1072
0
        add_partial_path(rel, (Path *) ipath);
1073
0
      else
1074
0
        pfree(ipath);
1075
0
    }
1076
124k
  }
1077
1078
  /*
1079
   * 5. If the index is ordered, a backwards scan might be interesting.
1080
   */
1081
231k
  if (index_is_ordered && 
pathkeys_possibly_useful231k
)
1082
40.0k
  {
1083
40.0k
    index_pathkeys = build_index_pathkeys(root, index,
1084
40.0k
                        BackwardScanDirection);
1085
40.0k
    useful_pathkeys = truncate_useless_pathkeys(root, rel,
1086
40.0k
                          index_pathkeys);
1087
40.0k
    if (useful_pathkeys != NIL)
1088
129
    {
1089
129
      ipath = create_index_path(root, index,
1090
129
                    index_clauses,
1091
129
                    clause_columns,
1092
129
                    NIL,
1093
129
                    NIL,
1094
129
                    useful_pathkeys,
1095
129
                    BackwardScanDirection,
1096
129
                    index_only_scan,
1097
129
                    outer_relids,
1098
129
                    loop_count,
1099
129
                    false);
1100
129
      result = lappend(result, ipath);
1101
1102
      /* If appropriate, consider parallel index scan */
1103
129
      if (index->amcanparallel &&
1104
129
        
rel->consider_parallel3
&&
outer_relids == NULL0
&&
1105
129
        
scantype != ST_BITMAPSCAN0
)
1106
0
      {
1107
0
        ipath = create_index_path(root, index,
1108
0
                      index_clauses,
1109
0
                      clause_columns,
1110
0
                      NIL,
1111
0
                      NIL,
1112
0
                      useful_pathkeys,
1113
0
                      BackwardScanDirection,
1114
0
                      index_only_scan,
1115
0
                      outer_relids,
1116
0
                      loop_count,
1117
0
                      true);
1118
1119
        /*
1120
         * if, after costing the path, we find that it's not worth
1121
         * using parallel workers, just free it.
1122
         */
1123
0
        if (ipath->path.parallel_workers > 0)
1124
0
          add_partial_path(rel, (Path *) ipath);
1125
0
        else
1126
0
          pfree(ipath);
1127
0
      }
1128
129
    }
1129
40.0k
  }
1130
1131
231k
  return result;
1132
231k
}
1133
1134
/*
1135
 * build_paths_for_OR
1136
 *    Given a list of restriction clauses from one arm of an OR clause,
1137
 *    construct all matching IndexPaths for the relation.
1138
 *
1139
 * Here we must scan all indexes of the relation, since a bitmap OR tree
1140
 * can use multiple indexes.
1141
 *
1142
 * The caller actually supplies two lists of restriction clauses: some
1143
 * "current" ones and some "other" ones.  Both lists can be used freely
1144
 * to match keys of the index, but an index must use at least one of the
1145
 * "current" clauses to be considered usable.  The motivation for this is
1146
 * examples like
1147
 *    WHERE (x = 42) AND (... OR (y = 52 AND z = 77) OR ....)
1148
 * While we are considering the y/z subclause of the OR, we can use "x = 42"
1149
 * as one of the available index conditions; but we shouldn't match the
1150
 * subclause to any index on x alone, because such a Path would already have
1151
 * been generated at the upper level.  So we could use an index on x,y,z
1152
 * or an index on x,y for the OR subclause, but not an index on just x.
1153
 * When dealing with a partial index, a match of the index predicate to
1154
 * one of the "current" clauses also makes the index usable.
1155
 *
1156
 * 'rel' is the relation for which we want to generate index paths
1157
 * 'clauses' is the current list of clauses (RestrictInfo nodes)
1158
 * 'other_clauses' is the list of additional upper-level clauses
1159
 */
1160
static List *
1161
build_paths_for_OR(PlannerInfo *root, RelOptInfo *rel,
1162
           List *clauses, List *other_clauses)
1163
915
{
1164
915
  List     *result = NIL;
1165
915
  List     *all_clauses = NIL; /* not computed till needed */
1166
915
  ListCell   *lc;
1167
1168
915
  foreach(lc, rel->indexlist)
1169
2.23k
  {
1170
2.23k
    IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
1171
2.23k
    IndexClauseSet clauseset;
1172
2.23k
    List     *indexpaths;
1173
2.23k
    bool    useful_predicate;
1174
1175
    /* Ignore index if it doesn't support bitmap scans */
1176
2.23k
    if (!index->amhasgetbitmap)
1177
2.17k
      continue;
1178
1179
    /*
1180
     * Ignore partial indexes that do not match the query.  If a partial
1181
     * index is marked predOK then we know it's OK.  Otherwise, we have to
1182
     * test whether the added clauses are sufficient to imply the
1183
     * predicate. If so, we can use the index in the current context.
1184
     *
1185
     * We set useful_predicate to true iff the predicate was proven using
1186
     * the current set of clauses.  This is needed to prevent matching a
1187
     * predOK index to an arm of an OR, which would be a legal but
1188
     * pointlessly inefficient plan.  (A better plan will be generated by
1189
     * just scanning the predOK index alone, no OR.)
1190
     */
1191
60
    useful_predicate = false;
1192
60
    if (index->indpred != NIL)
1193
0
    {
1194
0
      if (index->predOK)
1195
0
      {
1196
        /* Usable, but don't set useful_predicate */
1197
0
      }
1198
0
      else
1199
0
      {
1200
        /* Form all_clauses if not done already */
1201
0
        if (all_clauses == NIL)
1202
0
          all_clauses = list_concat(list_copy(clauses),
1203
0
                        other_clauses);
1204
1205
0
        if (!predicate_implied_by(index->indpred, all_clauses, false))
1206
0
          continue; /* can't use it at all */
1207
1208
0
        if (!predicate_implied_by(index->indpred, other_clauses, false))
1209
0
          useful_predicate = true;
1210
0
      }
1211
0
    }
1212
1213
    /*
1214
     * Identify the restriction clauses that can match the index.
1215
     */
1216
60
    MemSet(&clauseset, 0, sizeof(clauseset));
1217
60
    match_clauses_to_index(index, clauses, &clauseset);
1218
1219
    /*
1220
     * If no matches so far, and the index predicate isn't useful, we
1221
     * don't want it.
1222
     */
1223
60
    if (!clauseset.nonempty && 
!useful_predicate32
)
1224
32
      continue;
1225
1226
    /*
1227
     * Add "other" restriction clauses to the clauseset.
1228
     */
1229
28
    match_clauses_to_index(index, other_clauses, &clauseset);
1230
1231
    /*
1232
     * Construct paths if possible.
1233
     */
1234
28
    indexpaths = build_index_paths(root, rel,
1235
28
                     index, &clauseset,
1236
28
                     useful_predicate,
1237
28
                     ST_BITMAPSCAN,
1238
28
                     NULL,
1239
28
                     NULL);
1240
28
    result = list_concat(result, indexpaths);
1241
28
  }
1242
1243
915
  return result;
1244
915
}
1245
1246
/*
1247
 * generate_bitmap_or_paths
1248
 *    Look through the list of clauses to find OR clauses, and generate
1249
 *    a BitmapOrPath for each one we can handle that way.  Return a list
1250
 *    of the generated BitmapOrPaths.
1251
 *
1252
 * other_clauses is a list of additional clauses that can be assumed true
1253
 * for the purpose of generating indexquals, but are not to be searched for
1254
 * ORs.  (See build_paths_for_OR() for motivation.)
1255
 */
1256
static List *
1257
generate_bitmap_or_paths(PlannerInfo *root, RelOptInfo *rel,
1258
             List *clauses, List *other_clauses)
1259
284k
{
1260
284k
  List     *result = NIL;
1261
284k
  List     *all_clauses;
1262
284k
  ListCell   *lc;
1263
1264
  /*
1265
   * We can use both the current and other clauses as context for
1266
   * build_paths_for_OR; no need to remove ORs from the lists.
1267
   */
1268
284k
  all_clauses = list_concat(list_copy(clauses), other_clauses);
1269
1270
284k
  foreach(lc, clauses)
1271
134k
  {
1272
134k
    RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
1273
134k
    List     *pathlist;
1274
134k
    Path     *bitmapqual;
1275
134k
    ListCell   *j;
1276
1277
    /* Ignore RestrictInfos that aren't ORs */
1278
134k
    if (!restriction_is_or_clause(rinfo))
1279
133k
      continue;
1280
1281
    /*
1282
     * We must be able to match at least one index to each of the arms of
1283
     * the OR, else we can't use it.
1284
     */
1285
903
    pathlist = NIL;
1286
903
    foreach(j, ((BoolExpr *) rinfo->orclause)->args)
1287
915
    {
1288
915
      Node     *orarg = (Node *) lfirst(j);
1289
915
      List     *indlist;
1290
1291
      /* OR arguments should be ANDs or sub-RestrictInfos */
1292
915
      if (and_clause(orarg))
1293
0
      {
1294
0
        List     *andargs = ((BoolExpr *) orarg)->args;
1295
1296
0
        indlist = build_paths_for_OR(root, rel,
1297
0
                       andargs,
1298
0
                       all_clauses);
1299
1300
        /* Recurse in case there are sub-ORs */
1301
0
        indlist = list_concat(indlist,
1302
0
                    generate_bitmap_or_paths(root, rel,
1303
0
                                 andargs,
1304
0
                                 all_clauses));
1305
0
      }
1306
915
      else
1307
915
      {
1308
915
        RestrictInfo *rinfo = castNode(RestrictInfo, orarg);
1309
915
        List     *orargs;
1310
1311
915
        Assert(!restriction_is_or_clause(rinfo));
1312
915
        orargs = list_make1(rinfo);
1313
1314
915
        indlist = build_paths_for_OR(root, rel,
1315
915
                       orargs,
1316
915
                       all_clauses);
1317
915
      }
1318
1319
      /*
1320
       * If nothing matched this arm, we can't do anything with this OR
1321
       * clause.
1322
       */
1323
915
      if (indlist == NIL)
1324
887
      {
1325
887
        pathlist = NIL;
1326
887
        break;
1327
887
      }
1328
1329
      /*
1330
       * OK, pick the most promising AND combination, and add it to
1331
       * pathlist.
1332
       */
1333
28
      bitmapqual = choose_bitmap_and(root, rel, indlist);
1334
28
      pathlist = lappend(pathlist, bitmapqual);
1335
28
    }
1336
1337
    /*
1338
     * If we have a match for every arm, then turn them into a
1339
     * BitmapOrPath, and add to result list.
1340
     */
1341
903
    if (pathlist != NIL)
1342
14
    {
1343
14
      bitmapqual = (Path *) create_bitmap_or_path(root, rel, pathlist);
1344
14
      result = lappend(result, bitmapqual);
1345
14
    }
1346
903
  }
1347
1348
284k
  return result;
1349
284k
}
1350
1351
1352
/*
1353
 * choose_bitmap_and
1354
 *    Given a nonempty list of bitmap paths, AND them into one path.
1355
 *
1356
 * This is a nontrivial decision since we can legally use any subset of the
1357
 * given path set.  We want to choose a good tradeoff between selectivity
1358
 * and cost of computing the bitmap.
1359
 *
1360
 * The result is either a single one of the inputs, or a BitmapAndPath
1361
 * combining multiple inputs.
1362
 */
1363
static Path *
1364
choose_bitmap_and(PlannerInfo *root, RelOptInfo *rel, List *paths)
1365
269
{
1366
269
  int     npaths = list_length(paths);
1367
269
  PathClauseUsage **pathinfoarray;
1368
269
  PathClauseUsage *pathinfo;
1369
269
  List     *clauselist;
1370
269
  List     *bestpaths = NIL;
1371
269
  Cost    bestcost = 0;
1372
269
  int     i,
1373
269
        j;
1374
269
  ListCell   *l;
1375
1376
269
  Assert(npaths > 0);     /* else caller error */
1377
269
  if (npaths == 1)
1378
251
    return (Path *) linitial(paths); /* easy case */
1379
1380
  /*
1381
   * In theory we should consider every nonempty subset of the given paths.
1382
   * In practice that seems like overkill, given the crude nature of the
1383
   * estimates, not to mention the possible effects of higher-level AND and
1384
   * OR clauses.  Moreover, it's completely impractical if there are a large
1385
   * number of paths, since the work would grow as O(2^N).
1386
   *
1387
   * As a heuristic, we first check for paths using exactly the same sets of
1388
   * WHERE clauses + index predicate conditions, and reject all but the
1389
   * cheapest-to-scan in any such group.  This primarily gets rid of indexes
1390
   * that include the interesting columns but also irrelevant columns.  (In
1391
   * situations where the DBA has gone overboard on creating variant
1392
   * indexes, this can make for a very large reduction in the number of
1393
   * paths considered further.)
1394
   *
1395
   * We then sort the surviving paths with the cheapest-to-scan first, and
1396
   * for each path, consider using that path alone as the basis for a bitmap
1397
   * scan.  Then we consider bitmap AND scans formed from that path plus
1398
   * each subsequent (higher-cost) path, adding on a subsequent path if it
1399
   * results in a reduction in the estimated total scan cost. This means we
1400
   * consider about O(N^2) rather than O(2^N) path combinations, which is
1401
   * quite tolerable, especially given than N is usually reasonably small
1402
   * because of the prefiltering step.  The cheapest of these is returned.
1403
   *
1404
   * We will only consider AND combinations in which no two indexes use the
1405
   * same WHERE clause.  This is a bit of a kluge: it's needed because
1406
   * costsize.c and clausesel.c aren't very smart about redundant clauses.
1407
   * They will usually double-count the redundant clauses, producing a
1408
   * too-small selectivity that makes a redundant AND step look like it
1409
   * reduces the total cost.  Perhaps someday that code will be smarter and
1410
   * we can remove this limitation.  (But note that this also defends
1411
   * against flat-out duplicate input paths, which can happen because
1412
   * match_join_clauses_to_index will find the same OR join clauses that
1413
   * extract_restriction_or_clauses has pulled OR restriction clauses out
1414
   * of.)
1415
   *
1416
   * For the same reason, we reject AND combinations in which an index
1417
   * predicate clause duplicates another clause.  Here we find it necessary
1418
   * to be even stricter: we'll reject a partial index if any of its
1419
   * predicate clauses are implied by the set of WHERE clauses and predicate
1420
   * clauses used so far.  This covers cases such as a condition "x = 42"
1421
   * used with a plain index, followed by a clauseless scan of a partial
1422
   * index "WHERE x >= 40 AND x < 50".  The partial index has been accepted
1423
   * only because "x = 42" was present, and so allowing it would partially
1424
   * double-count selectivity.  (We could use predicate_implied_by on
1425
   * regular qual clauses too, to have a more intelligent, but much more
1426
   * expensive, check for redundancy --- but in most cases simple equality
1427
   * seems to suffice.)
1428
   */
1429
1430
  /*
1431
   * Extract clause usage info and detect any paths that use exactly the
1432
   * same set of clauses; keep only the cheapest-to-scan of any such groups.
1433
   * The surviving paths are put into an array for qsort'ing.
1434
   */
1435
18
  pathinfoarray = (PathClauseUsage **)
1436
18
    palloc(npaths * sizeof(PathClauseUsage *));
1437
18
  clauselist = NIL;
1438
18
  npaths = 0;
1439
18
  foreach(l, paths)
1440
44
  {
1441
44
    Path     *ipath = (Path *) lfirst(l);
1442
1443
44
    pathinfo = classify_index_clause_usage(ipath, &clauselist);
1444
1445
    /* If it's unclassifiable, treat it as distinct from all others */
1446
44
    if (pathinfo->unclassifiable)
1447
0
    {
1448
0
      pathinfoarray[npaths++] = pathinfo;
1449
0
      continue;
1450
0
    }
1451
1452
70
    
for (i = 0; 44
i < npaths;
i++26
)
1453
35
    {
1454
35
      if (!pathinfoarray[i]->unclassifiable &&
1455
35
        bms_equal(pathinfo->clauseids, pathinfoarray[i]->clauseids))
1456
9
        break;
1457
35
    }
1458
44
    if (i < npaths)
1459
9
    {
1460
      /* duplicate clauseids, keep the cheaper one */
1461
9
      Cost    ncost;
1462
9
      Cost    ocost;
1463
9
      Selectivity nselec;
1464
9
      Selectivity oselec;
1465
1466
9
      cost_bitmap_tree_node(pathinfo->path, &ncost, &nselec);
1467
9
      cost_bitmap_tree_node(pathinfoarray[i]->path, &ocost, &oselec);
1468
9
      if (ncost < ocost)
1469
2
        pathinfoarray[i] = pathinfo;
1470
9
    }
1471
35
    else
1472
35
    {
1473
      /* not duplicate clauseids, add to array */
1474
35
      pathinfoarray[npaths++] = pathinfo;
1475
35
    }
1476
44
  }
1477
1478
  /* If only one surviving path, we're done */
1479
18
  if (npaths == 1)
1480
7
    return pathinfoarray[0]->path;
1481
1482
  /* Sort the surviving paths by index access cost */
1483
11
  qsort(pathinfoarray, npaths, sizeof(PathClauseUsage *),
1484
11
      path_usage_comparator);
1485
1486
  /*
1487
   * For each surviving index, consider it as an "AND group leader", and see
1488
   * whether adding on any of the later indexes results in an AND path with
1489
   * cheaper total cost than before.  Then take the cheapest AND group.
1490
   *
1491
   * Note: paths that are either clauseless or unclassifiable will have
1492
   * empty clauseids, so that they will not be rejected by the clauseids
1493
   * filter here, nor will they cause later paths to be rejected by it.
1494
   */
1495
39
  for (i = 0; i < npaths; 
i++28
)
1496
28
  {
1497
28
    Cost    costsofar;
1498
28
    List     *qualsofar;
1499
28
    Bitmapset  *clauseidsofar;
1500
28
    ListCell   *lastcell;
1501
1502
28
    pathinfo = pathinfoarray[i];
1503
28
    paths = list_make1(pathinfo->path);
1504
28
    costsofar = bitmap_scan_cost_est(root, rel, pathinfo->path);
1505
28
    qualsofar = list_concat(list_copy(pathinfo->quals),
1506
28
                list_copy(pathinfo->preds));
1507
28
    clauseidsofar = bms_copy(pathinfo->clauseids);
1508
28
    lastcell = list_head(paths);  /* for quick deletions */
1509
1510
54
    for (j = i + 1; j < npaths; 
j++26
)
1511
26
    {
1512
26
      Cost    newcost;
1513
1514
26
      pathinfo = pathinfoarray[j];
1515
      /* Check for redundancy */
1516
26
      if (bms_overlap(pathinfo->clauseids, clauseidsofar))
1517
9
        continue;    /* consider it redundant */
1518
17
      if (pathinfo->preds)
1519
0
      {
1520
0
        bool    redundant = false;
1521
1522
        /* we check each predicate clause separately */
1523
0
        foreach(l, pathinfo->preds)
1524
0
        {
1525
0
          Node     *np = (Node *) lfirst(l);
1526
1527
0
          if (predicate_implied_by(list_make1(np), qualsofar, false))
1528
0
          {
1529
0
            redundant = true;
1530
0
            break;  /* out of inner foreach loop */
1531
0
          }
1532
0
        }
1533
0
        if (redundant)
1534
0
          continue;
1535
0
      }
1536
      /* tentatively add new path to paths, so we can estimate cost */
1537
17
      paths = lappend(paths, pathinfo->path);
1538
17
      newcost = bitmap_and_cost_est(root, rel, paths);
1539
17
      if (newcost < costsofar)
1540
6
      {
1541
        /* keep new path in paths, update subsidiary variables */
1542
6
        costsofar = newcost;
1543
6
        qualsofar = list_concat(qualsofar,
1544
6
                    list_copy(pathinfo->quals));
1545
6
        qualsofar = list_concat(qualsofar,
1546
6
                    list_copy(pathinfo->preds));
1547
6
        clauseidsofar = bms_add_members(clauseidsofar,
1548
6
                        pathinfo->clauseids);
1549
6
        lastcell = lnext(lastcell);
1550
6
      }
1551
11
      else
1552
11
      {
1553
        /* reject new path, remove it from paths list */
1554
11
        paths = list_delete_cell(paths, lnext(lastcell), lastcell);
1555
11
      }
1556
17
      Assert(lnext(lastcell) == NULL);
1557
17
    }
1558
1559
    /* Keep the cheapest AND-group (or singleton) */
1560
28
    if (i == 0 || 
costsofar < bestcost17
)
1561
11
    {
1562
11
      bestpaths = paths;
1563
11
      bestcost = costsofar;
1564
11
    }
1565
1566
    /* some easy cleanup (we don't try real hard though) */
1567
28
    list_free(qualsofar);
1568
28
  }
1569
1570
11
  if (list_length(bestpaths) == 1)
1571
5
    return (Path *) linitial(bestpaths); /* no need for AND */
1572
6
  return (Path *) create_bitmap_and_path(root, rel, bestpaths);
1573
11
}
1574
1575
/* qsort comparator to sort in increasing index access cost order */
1576
static int
1577
path_usage_comparator(const void *a, const void *b)
1578
23
{
1579
23
  PathClauseUsage *pa = *(PathClauseUsage *const *) a;
1580
23
  PathClauseUsage *pb = *(PathClauseUsage *const *) b;
1581
23
  Cost    acost;
1582
23
  Cost    bcost;
1583
23
  Selectivity aselec;
1584
23
  Selectivity bselec;
1585
1586
23
  cost_bitmap_tree_node(pa->path, &acost, &aselec);
1587
23
  cost_bitmap_tree_node(pb->path, &bcost, &bselec);
1588
1589
  /*
1590
   * If costs are the same, sort by selectivity.
1591
   */
1592
23
  if (acost < bcost)
1593
8
    return -1;
1594
15
  if (acost > bcost)
1595
9
    return 1;
1596
1597
6
  if (aselec < bselec)
1598
0
    return -1;
1599
6
  if (aselec > bselec)
1600
0
    return 1;
1601
1602
6
  return 0;
1603
6
}
1604
1605
/*
1606
 * Estimate the cost of actually executing a bitmap scan with a single
1607
 * index path (which could be a BitmapAnd or BitmapOr node).
1608
 */
1609
static Cost
1610
bitmap_scan_cost_est(PlannerInfo *root, RelOptInfo *rel, Path *ipath)
1611
45
{
1612
45
  BitmapHeapPath bpath;
1613
1614
  /* Set up a dummy BitmapHeapPath */
1615
45
  bpath.path.type = T_BitmapHeapPath;
1616
45
  bpath.path.pathtype = T_BitmapHeapScan;
1617
45
  bpath.path.parent = rel;
1618
45
  bpath.path.pathtarget = rel->reltarget;
1619
45
  bpath.path.param_info = ipath->param_info;
1620
45
  bpath.path.pathkeys = NIL;
1621
45
  bpath.bitmapqual = ipath;
1622
1623
  /*
1624
   * Check the cost of temporary path without considering parallelism.
1625
   * Parallel bitmap heap path will be considered at later stage.
1626
   */
1627
45
  bpath.path.parallel_workers = 0;
1628
1629
  /* Now we can do cost_bitmap_heap_scan */
1630
45
  cost_bitmap_heap_scan(&bpath.path, root, rel,
1631
45
              bpath.path.param_info,
1632
45
              ipath,
1633
45
              get_loop_count(root, rel->relid,
1634
45
                     PATH_REQ_OUTER(ipath)));
1635
1636
45
  return bpath.path.total_cost;
1637
45
}
1638
1639
/*
1640
 * Estimate the cost of actually executing a BitmapAnd scan with the given
1641
 * inputs.
1642
 */
1643
static Cost
1644
bitmap_and_cost_est(PlannerInfo *root, RelOptInfo *rel, List *paths)
1645
17
{
1646
17
  BitmapAndPath *apath;
1647
1648
  /*
1649
   * Might as well build a real BitmapAndPath here, as the work is slightly
1650
   * too complicated to be worth repeating just to save one palloc.
1651
   */
1652
17
  apath = create_bitmap_and_path(root, rel, paths);
1653
1654
17
  return bitmap_scan_cost_est(root, rel, (Path *) apath);
1655
17
}
1656
1657
1658
/*
1659
 * classify_index_clause_usage
1660
 *    Construct a PathClauseUsage struct describing the WHERE clauses and
1661
 *    index predicate clauses used by the given indexscan path.
1662
 *    We consider two clauses the same if they are equal().
1663
 *
1664
 * At some point we might want to migrate this info into the Path data
1665
 * structure proper, but for the moment it's only needed within
1666
 * choose_bitmap_and().
1667
 *
1668
 * *clauselist is used and expanded as needed to identify all the distinct
1669
 * clauses seen across successive calls.  Caller must initialize it to NIL
1670
 * before first call of a set.
1671
 */
1672
static PathClauseUsage *
1673
classify_index_clause_usage(Path *path, List **clauselist)
1674
44
{
1675
44
  PathClauseUsage *result;
1676
44
  Bitmapset  *clauseids;
1677
44
  ListCell   *lc;
1678
1679
44
  result = (PathClauseUsage *) palloc(sizeof(PathClauseUsage));
1680
44
  result->path = path;
1681
1682
  /* Recursively find the quals and preds used by the path */
1683
44
  result->quals = NIL;
1684
44
  result->preds = NIL;
1685
44
  find_indexpath_quals(path, &result->quals, &result->preds);
1686
1687
  /*
1688
   * Some machine-generated queries have outlandish numbers of qual clauses.
1689
   * To avoid getting into O(N^2) behavior even in this preliminary
1690
   * classification step, we want to limit the number of entries we can
1691
   * accumulate in *clauselist.  Treat any path with more than 100 quals +
1692
   * preds as unclassifiable, which will cause calling code to consider it
1693
   * distinct from all other paths.
1694
   */
1695
44
  if (list_length(result->quals) + list_length(result->preds) > 100)
1696
0
  {
1697
0
    result->clauseids = NULL;
1698
0
    result->unclassifiable = true;
1699
0
    return result;
1700
0
  }
1701
1702
  /* Build up a bitmapset representing the quals and preds */
1703
44
  clauseids = NULL;
1704
44
  foreach(lc, result->quals)
1705
60
  {
1706
60
    Node     *node = (Node *) lfirst(lc);
1707
1708
60
    clauseids = bms_add_member(clauseids,
1709
60
                   find_list_position(node, clauselist));
1710
60
  }
1711
44
  foreach(lc, result->preds)
1712
0
  {
1713
0
    Node     *node = (Node *) lfirst(lc);
1714
1715
0
    clauseids = bms_add_member(clauseids,
1716
0
                   find_list_position(node, clauselist));
1717
0
  }
1718
44
  result->clauseids = clauseids;
1719
44
  result->unclassifiable = false;
1720
1721
44
  return result;
1722
44
}
1723
1724
1725
/*
1726
 * find_indexpath_quals
1727
 *
1728
 * Given the Path structure for a plain or bitmap indexscan, extract lists
1729
 * of all the indexquals and index predicate conditions used in the Path.
1730
 * These are appended to the initial contents of *quals and *preds (hence
1731
 * caller should initialize those to NIL).
1732
 *
1733
 * Note we are not trying to produce an accurate representation of the AND/OR
1734
 * semantics of the Path, but just find out all the base conditions used.
1735
 *
1736
 * The result lists contain pointers to the expressions used in the Path,
1737
 * but all the list cells are freshly built, so it's safe to destructively
1738
 * modify the lists (eg, by concat'ing with other lists).
1739
 */
1740
static void
1741
find_indexpath_quals(Path *bitmapqual, List **quals, List **preds)
1742
68
{
1743
68
  if (IsA(bitmapqual, BitmapAndPath))
1744
0
  {
1745
0
    BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
1746
0
    ListCell   *l;
1747
1748
0
    foreach(l, apath->bitmapquals)
1749
0
    {
1750
0
      find_indexpath_quals((Path *) lfirst(l), quals, preds);
1751
0
    }
1752
0
  }
1753
68
  else if (IsA(bitmapqual, BitmapOrPath))
1754
12
  {
1755
12
    BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
1756
12
    ListCell   *l;
1757
1758
12
    foreach(l, opath->bitmapquals)
1759
24
    {
1760
24
      find_indexpath_quals((Path *) lfirst(l), quals, preds);
1761
24
    }
1762
12
  }
1763
56
  else if (IsA(bitmapqual, IndexPath))
1764
56
  {
1765
56
    IndexPath  *ipath = (IndexPath *) bitmapqual;
1766
1767
56
    *quals = list_concat(*quals, get_actual_clauses(ipath->indexclauses));
1768
56
    *preds = list_concat(*preds, list_copy(ipath->indexinfo->indpred));
1769
56
  }
1770
0
  else
1771
0
    elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
1772
68
}
1773
1774
1775
/*
1776
 * find_list_position
1777
 *    Return the given node's position (counting from 0) in the given
1778
 *    list of nodes.  If it's not equal() to any existing list member,
1779
 *    add it at the end, and return that position.
1780
 */
1781
static int
1782
find_list_position(Node *node, List **nodelist)
1783
60
{
1784
60
  int     i;
1785
60
  ListCell   *lc;
1786
1787
60
  i = 0;
1788
60
  foreach(lc, *nodelist)
1789
60
  {
1790
60
    Node     *oldnode = (Node *) lfirst(lc);
1791
1792
60
    if (equal(node, oldnode))
1793
24
      return i;
1794
36
    i++;
1795
36
  }
1796
1797
36
  *nodelist = lappend(*nodelist, node);
1798
1799
36
  return i;
1800
60
}
1801
1802
1803
/*
1804
 * check_index_only
1805
 *    Determine whether an index-only scan is possible for this index.
1806
 */
1807
static bool
1808
check_index_only(RelOptInfo *rel, IndexOptInfo *index)
1809
231k
{
1810
231k
  bool    result;
1811
231k
  Bitmapset  *attrs_used = NULL;
1812
231k
  Bitmapset  *index_canreturn_attrs = NULL;
1813
231k
  Bitmapset  *index_cannotreturn_attrs = NULL;
1814
231k
  ListCell   *lc;
1815
231k
  int     i;
1816
1817
  /* Index-only scans must be enabled */
1818
231k
  if (!enable_indexonlyscan)
1819
184
    return false;
1820
1821
  /*
1822
   * Check that all needed attributes of the relation are available from the
1823
   * index.
1824
   */
1825
1826
  /*
1827
   * First, identify all the attributes needed for joins or final output.
1828
   * Note: we must look at rel's targetlist, not the attr_needed data,
1829
   * because attr_needed isn't computed for inheritance child rels.
1830
   */
1831
231k
  pull_varattnos((Node *) rel->reltarget->exprs, rel->relid, &attrs_used);
1832
1833
  /*
1834
   * Add all the attributes used by restriction clauses; but consider only
1835
   * those clauses not implied by the index predicate, since ones that are
1836
   * so implied don't need to be checked explicitly in the plan.
1837
   *
1838
   * Note: attributes used only in index quals would not be needed at
1839
   * runtime either, if we are certain that the index is not lossy.  However
1840
   * it'd be complicated to account for that accurately, and it doesn't
1841
   * matter in most cases, since we'd conclude that such attributes are
1842
   * available from the index anyway.
1843
   */
1844
231k
  foreach(lc, index->indrestrictinfo)
1845
231k
  {
1846
231k
    RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1847
1848
231k
    pull_varattnos((Node *) rinfo->clause, rel->relid, &attrs_used);
1849
231k
  }
1850
1851
  /*
1852
   * Construct a bitmapset of columns that the index can return back in an
1853
   * index-only scan.  If there are multiple index columns containing the
1854
   * same attribute, all of them must be capable of returning the value,
1855
   * since we might recheck operators on any of them.  (Potentially we could
1856
   * be smarter about that, but it's such a weird situation that it doesn't
1857
   * seem worth spending a lot of sweat on.)
1858
   */
1859
551k
  for (i = 0; i < index->ncolumns; 
i++319k
)
1860
319k
  {
1861
319k
    int     attno = index->indexkeys[i];
1862
1863
    /*
1864
     * For the moment, we just ignore index expressions.  It might be nice
1865
     * to do something with them, later.
1866
     */
1867
319k
    if (attno == 0)
1868
225
      continue;
1869
1870
319k
    if (index->canreturn[i])
1871
157k
      index_canreturn_attrs =
1872
157k
        bms_add_member(index_canreturn_attrs,
1873
157k
                 attno - FirstLowInvalidHeapAttributeNumber);
1874
162k
    else
1875
162k
      index_cannotreturn_attrs =
1876
162k
        bms_add_member(index_cannotreturn_attrs,
1877
162k
                 attno - FirstLowInvalidHeapAttributeNumber);
1878
319k
  }
1879
1880
231k
  index_canreturn_attrs = bms_del_members(index_canreturn_attrs,
1881
231k
                      index_cannotreturn_attrs);
1882
1883
  /* Do we have all the necessary attributes? */
1884
231k
  result = bms_is_subset(attrs_used, index_canreturn_attrs);
1885
1886
231k
  bms_free(attrs_used);
1887
231k
  bms_free(index_canreturn_attrs);
1888
231k
  bms_free(index_cannotreturn_attrs);
1889
1890
231k
  return result;
1891
231k
}
1892
1893
/*
1894
 * get_loop_count
1895
 *    Choose the loop count estimate to use for costing a parameterized path
1896
 *    with the given set of outer relids.
1897
 *
1898
 * Since we produce parameterized paths before we've begun to generate join
1899
 * relations, it's impossible to predict exactly how many times a parameterized
1900
 * path will be iterated; we don't know the size of the relation that will be
1901
 * on the outside of the nestloop.  However, we should try to account for
1902
 * multiple iterations somehow in costing the path.  The heuristic embodied
1903
 * here is to use the rowcount of the smallest other base relation needed in
1904
 * the join clauses used by the path.  (We could alternatively consider the
1905
 * largest one, but that seems too optimistic.)  This is of course the right
1906
 * answer for single-other-relation cases, and it seems like a reasonable
1907
 * zero-order approximation for multiway-join cases.
1908
 *
1909
 * In addition, we check to see if the other side of each join clause is on
1910
 * the inside of some semijoin that the current relation is on the outside of.
1911
 * If so, the only way that a parameterized path could be used is if the
1912
 * semijoin RHS has been unique-ified, so we should use the number of unique
1913
 * RHS rows rather than using the relation's raw rowcount.
1914
 *
1915
 * Note: for this to work, allpaths.c must establish all baserel size
1916
 * estimates before it begins to compute paths, or at least before it
1917
 * calls create_index_paths().
1918
 */
1919
static double
1920
get_loop_count(PlannerInfo *root, Index cur_relid, Relids outer_relids)
1921
231k
{
1922
231k
  double    result;
1923
231k
  int     outer_relid;
1924
1925
  /* For a non-parameterized path, just return 1.0 quickly */
1926
231k
  if (outer_relids == NULL)
1927
220k
    return 1.0;
1928
1929
11.5k
  result = 0.0;
1930
11.5k
  outer_relid = -1;
1931
22.9k
  while ((outer_relid = bms_next_member(outer_relids, outer_relid)) >= 0)
1932
11.3k
  {
1933
11.3k
    RelOptInfo *outer_rel;
1934
11.3k
    double    rowcount;
1935
1936
    /* Paranoia: ignore bogus relid indexes */
1937
11.3k
    if (outer_relid >= root->simple_rel_array_size)
1938
0
      continue;
1939
11.3k
    outer_rel = root->simple_rel_array[outer_relid];
1940
11.3k
    if (outer_rel == NULL)
1941
0
      continue;
1942
11.3k
    Assert(outer_rel->relid == outer_relid); /* sanity check on array */
1943
1944
    /* Other relation could be proven empty, if so ignore */
1945
11.3k
    if (IS_DUMMY_REL(outer_rel))
1946
0
      continue;
1947
1948
    /* Otherwise, rel's rows estimate should be valid by now */
1949
11.3k
    Assert(outer_rel->rows > 0);
1950
1951
    /* Check to see if rel is on the inside of any semijoins */
1952
11.3k
    rowcount = adjust_rowcount_for_semijoins(root,
1953
11.3k
                         cur_relid,
1954
11.3k
                         outer_relid,
1955
11.3k
                         outer_rel->rows);
1956
1957
    /* Remember smallest row count estimate among the outer rels */
1958
11.3k
    if (result == 0.0 || 
result > rowcount32
)
1959
11.3k
      result = rowcount;
1960
11.3k
  }
1961
  /* Return 1.0 if we found no valid relations (shouldn't happen) */
1962
11.5k
  return (result > 0.0) ? 
result11.3k
:
1.0229
;
1963
11.5k
}
1964
1965
/*
1966
 * Check to see if outer_relid is on the inside of any semijoin that cur_relid
1967
 * is on the outside of.  If so, replace rowcount with the estimated number of
1968
 * unique rows from the semijoin RHS (assuming that's smaller, which it might
1969
 * not be).  The estimate is crude but it's the best we can do at this stage
1970
 * of the proceedings.
1971
 */
1972
static double
1973
adjust_rowcount_for_semijoins(PlannerInfo *root,
1974
                Index cur_relid,
1975
                Index outer_relid,
1976
                double rowcount)
1977
11.3k
{
1978
11.3k
  ListCell   *lc;
1979
1980
11.3k
  foreach(lc, root->join_info_list)
1981
3.96k
  {
1982
3.96k
    SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
1983
1984
3.96k
    if (sjinfo->jointype == JOIN_SEMI &&
1985
3.96k
      
bms_is_member(cur_relid, sjinfo->syn_lefthand)105
&&
1986
3.96k
      
bms_is_member(outer_relid, sjinfo->syn_righthand)3
)
1987
1
    {
1988
      /* Estimate number of unique-ified rows */
1989
1
      double    nraw;
1990
1
      double    nunique;
1991
1992
1
      nraw = approximate_joinrel_size(root, sjinfo->syn_righthand);
1993
1
      nunique = estimate_num_groups(root,
1994
1
                      sjinfo->semi_rhs_exprs,
1995
1
                      nraw,
1996
1
                      NULL);
1997
1
      if (rowcount > nunique)
1998
1
        rowcount = nunique;
1999
1
    }
2000
3.96k
  }
2001
11.3k
  return rowcount;
2002
11.3k
}
2003
2004
/*
2005
 * Make an approximate estimate of the size of a joinrel.
2006
 *
2007
 * We don't have enough info at this point to get a good estimate, so we
2008
 * just multiply the base relation sizes together.  Fortunately, this is
2009
 * the right answer anyway for the most common case with a single relation
2010
 * on the RHS of a semijoin.  Also, estimate_num_groups() has only a weak
2011
 * dependency on its input_rows argument (it basically uses it as a clamp).
2012
 * So we might be able to get a fairly decent end result even with a severe
2013
 * overestimate of the RHS's raw size.
2014
 */
2015
static double
2016
approximate_joinrel_size(PlannerInfo *root, Relids relids)
2017
1
{
2018
1
  double    rowcount = 1.0;
2019
1
  int     relid;
2020
2021
1
  relid = -1;
2022
2
  while ((relid = bms_next_member(relids, relid)) >= 0)
2023
1
  {
2024
1
    RelOptInfo *rel;
2025
2026
    /* Paranoia: ignore bogus relid indexes */
2027
1
    if (relid >= root->simple_rel_array_size)
2028
0
      continue;
2029
1
    rel = root->simple_rel_array[relid];
2030
1
    if (rel == NULL)
2031
0
      continue;
2032
1
    Assert(rel->relid == relid); /* sanity check on array */
2033
2034
    /* Relation could be proven empty, if so ignore */
2035
1
    if (IS_DUMMY_REL(rel))
2036
0
      continue;
2037
2038
    /* Otherwise, rel's rows estimate should be valid by now */
2039
1
    Assert(rel->rows > 0);
2040
2041
    /* Accumulate product */
2042
1
    rowcount *= rel->rows;
2043
1
  }
2044
1
  return rowcount;
2045
1
}
2046
2047
2048
/****************************************************************************
2049
 *        ----  ROUTINES TO CHECK QUERY CLAUSES  ----
2050
 ****************************************************************************/
2051
2052
/*
2053
 * match_restriction_clauses_to_index
2054
 *    Identify restriction clauses for the rel that match the index.
2055
 *    Matching clauses are added to *clauseset.
2056
 */
2057
static void
2058
match_restriction_clauses_to_index(RelOptInfo *rel, IndexOptInfo *index,
2059
                   IndexClauseSet *clauseset)
2060
220k
{
2061
  /* We can ignore clauses that are implied by the index predicate */
2062
220k
  match_clauses_to_index(index, index->indrestrictinfo, clauseset);
2063
220k
}
2064
2065
/*
2066
 * match_join_clauses_to_index
2067
 *    Identify join clauses for the rel that match the index.
2068
 *    Matching clauses are added to *clauseset.
2069
 *    Also, add any potentially usable join OR clauses to *joinorclauses.
2070
 */
2071
static void
2072
match_join_clauses_to_index(PlannerInfo *root,
2073
              RelOptInfo *rel, IndexOptInfo *index,
2074
              IndexClauseSet *clauseset,
2075
              List **joinorclauses)
2076
220k
{
2077
220k
  ListCell   *lc;
2078
2079
  /* Scan the rel's join clauses */
2080
220k
  foreach(lc, rel->joininfo)
2081
11.1k
  {
2082
11.1k
    RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
2083
2084
    /* Check if clause can be moved to this rel */
2085
11.1k
    if (!join_clause_is_movable_to(rinfo, rel))
2086
5.73k
      continue;
2087
2088
    /* Potentially usable, so see if it matches the index or is an OR */
2089
5.45k
    if (restriction_is_or_clause(rinfo))
2090
656
      *joinorclauses = lappend(*joinorclauses, rinfo);
2091
4.79k
    else
2092
4.79k
      match_clause_to_index(index, rinfo, clauseset);
2093
5.45k
  }
2094
220k
}
2095
2096
/*
2097
 * match_eclass_clauses_to_index
2098
 *    Identify EquivalenceClass join clauses for the rel that match the index.
2099
 *    Matching clauses are added to *clauseset.
2100
 */
2101
static void
2102
match_eclass_clauses_to_index(PlannerInfo *root, IndexOptInfo *index,
2103
                IndexClauseSet *clauseset)
2104
220k
{
2105
220k
  int     indexcol;
2106
2107
  /* No work if rel is not in any such ECs */
2108
220k
  if (!index->rel->has_eclass_joins)
2109
203k
    return;
2110
2111
39.7k
  
for (indexcol = 0; 16.9k
indexcol < index->nkeycolumns;
indexcol++22.7k
)
2112
22.7k
  {
2113
22.7k
    ec_member_matches_arg arg;
2114
22.7k
    List     *clauses;
2115
2116
    /* Generate clauses, skipping any that join to lateral_referencers */
2117
22.7k
    arg.index = index;
2118
22.7k
    arg.indexcol = indexcol;
2119
22.7k
    clauses = generate_implied_equalities_for_column(root,
2120
22.7k
                             index->rel,
2121
22.7k
                             ec_member_matches_indexcol,
2122
22.7k
                             (void *) &arg,
2123
22.7k
                             index->rel->lateral_referencers);
2124
2125
    /*
2126
     * We have to check whether the results actually do match the index,
2127
     * since for non-btree indexes the EC's equality operators might not
2128
     * be in the index opclass (cf ec_member_matches_indexcol).
2129
     */
2130
22.7k
    match_clauses_to_index(index, clauses, clauseset);
2131
22.7k
  }
2132
16.9k
}
2133
2134
/*
2135
 * match_clauses_to_index
2136
 *    Perform match_clause_to_index() for each clause in a list.
2137
 *    Matching clauses are added to *clauseset.
2138
 */
2139
static void
2140
match_clauses_to_index(IndexOptInfo *index,
2141
             List *clauses,
2142
             IndexClauseSet *clauseset)
2143
243k
{
2144
243k
  ListCell   *lc;
2145
2146
243k
  foreach(lc, clauses)
2147
235k
  {
2148
235k
    RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
2149
2150
235k
    match_clause_to_index(index, rinfo, clauseset);
2151
235k
  }
2152
243k
}
2153
2154
/*
2155
 * match_clause_to_index
2156
 *    Test whether a qual clause can be used with an index.
2157
 *
2158
 * If the clause is usable, add it to the appropriate list in *clauseset.
2159
 * *clauseset must be initialized to zeroes before first call.
2160
 *
2161
 * Note: in some circumstances we may find the same RestrictInfos coming from
2162
 * multiple places.  Defend against redundant outputs by refusing to add a
2163
 * clause twice (pointer equality should be a good enough check for this).
2164
 *
2165
 * Note: it's possible that a badly-defined index could have multiple matching
2166
 * columns.  We always select the first match if so; this avoids scenarios
2167
 * wherein we get an inflated idea of the index's selectivity by using the
2168
 * same clause multiple times with different index columns.
2169
 */
2170
static void
2171
match_clause_to_index(IndexOptInfo *index,
2172
            RestrictInfo *rinfo,
2173
            IndexClauseSet *clauseset)
2174
239k
{
2175
239k
  int     indexcol;
2176
2177
  /*
2178
   * Never match pseudoconstants to indexes.  (Normally a match could not
2179
   * happen anyway, since a pseudoconstant clause couldn't contain a Var,
2180
   * but what if someone builds an expression index on a constant? It's not
2181
   * totally unreasonable to do so with a partial index, either.)
2182
   */
2183
239k
  if (rinfo->pseudoconstant)
2184
674
    return;
2185
2186
  /*
2187
   * If clause can't be used as an indexqual because it must wait till after
2188
   * some lower-security-level restriction clause, reject it.
2189
   */
2190
239k
  if (!restriction_is_securely_promotable(rinfo, index->rel))
2191
102
    return;
2192
2193
  /* OK, check each index key column for a match */
2194
390k
  
for (indexcol = 0; 238k
indexcol < index->nkeycolumns;
indexcol++151k
)
2195
270k
  {
2196
270k
    if (match_clause_to_indexcol(index,
2197
270k
                   indexcol,
2198
270k
                   rinfo))
2199
118k
    {
2200
118k
      clauseset->indexclauses[indexcol] =
2201
118k
        list_append_unique_ptr(clauseset->indexclauses[indexcol],
2202
118k
                     rinfo);
2203
118k
      clauseset->nonempty = true;
2204
118k
      return;
2205
118k
    }
2206
270k
  }
2207
238k
}
2208
2209
static bool is_yb_hash_code_call(Node *clause)
2210
131k
{
2211
131k
  return clause && 
IsA131k
(clause, FuncExpr)
2212
131k
        && 
(((FuncExpr *) clause)->funcid == 154
YB_HASH_CODE_OID154
);
2213
131k
}
2214
2215
/*
2216
 * match_clause_to_indexcol()
2217
 *    Determines whether a restriction clause matches a column of an index.
2218
 *
2219
 *    To match an index normally, the clause:
2220
 *
2221
 *    (1)  must be in the form (indexkey op const) or (const op indexkey);
2222
 *       and
2223
 *    (2)  must contain an operator which is in the same family as the index
2224
 *       operator for this column, or is a "special" operator as recognized
2225
 *       by match_special_index_operator();
2226
 *       and
2227
 *    (3)  must match the collation of the index, if collation is relevant.
2228
 *
2229
 *    Our definition of "const" is exceedingly liberal: we allow anything that
2230
 *    doesn't involve a volatile function or a Var of the index's relation.
2231
 *    In particular, Vars belonging to other relations of the query are
2232
 *    accepted here, since a clause of that form can be used in a
2233
 *    parameterized indexscan.  It's the responsibility of higher code levels
2234
 *    to manage restriction and join clauses appropriately.
2235
 *
2236
 *    Note: we do need to check for Vars of the index's relation on the
2237
 *    "const" side of the clause, since clauses like (a.f1 OP (b.f2 OP a.f3))
2238
 *    are not processable by a parameterized indexscan on a.f1, whereas
2239
 *    something like (a.f1 OP (b.f2 OP c.f3)) is.
2240
 *
2241
 *    Presently, the executor can only deal with indexquals that have the
2242
 *    indexkey on the left, so we can only use clauses that have the indexkey
2243
 *    on the right if we can commute the clause to put the key on the left.
2244
 *    We do not actually do the commuting here, but we check whether a
2245
 *    suitable commutator operator is available.
2246
 *
2247
 *    If the index has a collation, the clause must have the same collation.
2248
 *    For collation-less indexes, we assume it doesn't matter; this is
2249
 *    necessary for cases like "hstore ? text", wherein hstore's operators
2250
 *    don't care about collation but the clause will get marked with a
2251
 *    collation anyway because of the text argument.  (This logic is
2252
 *    embodied in the macro IndexCollMatchesExprColl.)
2253
 *
2254
 *    It is also possible to match RowCompareExpr clauses to indexes (but
2255
 *    currently, only btree indexes handle this).  In this routine we will
2256
 *    report a match if the first column of the row comparison matches the
2257
 *    target index column.  This is sufficient to guarantee that some index
2258
 *    condition can be constructed from the RowCompareExpr --- whether the
2259
 *    remaining columns match the index too is considered in
2260
 *    adjust_rowcompare_for_index().
2261
 *
2262
 *    It is also possible to match ScalarArrayOpExpr clauses to indexes, when
2263
 *    the clause is of the form "indexkey op ANY (arrayconst)".
2264
 *
2265
 *    For boolean indexes, it is also possible to match the clause directly
2266
 *    to the indexkey; or perhaps the clause is (NOT indexkey).
2267
 *
2268
 * 'index' is the index of interest.
2269
 * 'indexcol' is a column number of 'index' (counting from 0).
2270
 * 'rinfo' is the clause to be tested (as a RestrictInfo node).
2271
 *
2272
 * Returns true if the clause can be used with this index key.
2273
 *
2274
 * NOTE:  returns false if clause is an OR or AND clause; it is the
2275
 * responsibility of higher-level routines to cope with those.
2276
 */
2277
static bool
2278
match_clause_to_indexcol(IndexOptInfo *index,
2279
             int indexcol,
2280
             RestrictInfo *rinfo)
2281
270k
{
2282
270k
  Expr     *clause = rinfo->clause;
2283
270k
  Index   index_relid = index->rel->relid;
2284
270k
  Oid     opfamily;
2285
270k
  Oid     idxcollation;
2286
270k
  Node     *leftop,
2287
270k
         *rightop;
2288
270k
  Relids    left_relids;
2289
270k
  Relids    right_relids;
2290
270k
  Oid     expr_op;
2291
270k
  Oid     expr_coll;
2292
270k
  bool    plain_op;
2293
2294
270k
  Assert(indexcol < index->nkeycolumns);
2295
2296
270k
  opfamily = index->opfamily[indexcol];
2297
270k
  idxcollation = index->indexcollations[indexcol];
2298
2299
  /* First check for boolean-index cases. */
2300
270k
  if (IsBooleanOpfamily(opfamily))
2301
0
  {
2302
0
    if (match_boolean_index_clause((Node *) clause, indexcol, index))
2303
0
      return true;
2304
0
  }
2305
2306
  /*
2307
   * Clause must be a binary opclause, or possibly a ScalarArrayOpExpr
2308
   * (which is always binary, by definition).  Or it could be a
2309
   * RowCompareExpr, which we pass off to match_rowcompare_to_indexcol().
2310
   * Or, if the index supports it, we can handle IS NULL/NOT NULL clauses.
2311
   */
2312
270k
  if (is_opclause(clause))
2313
149k
  {
2314
149k
    leftop = get_leftop(clause);
2315
149k
    rightop = get_rightop(clause);
2316
149k
    if (!leftop || !rightop)
2317
0
      return false;
2318
149k
    left_relids = rinfo->left_relids;
2319
149k
    right_relids = rinfo->right_relids;
2320
149k
    expr_op = ((OpExpr *) clause)->opno;
2321
149k
    expr_coll = ((OpExpr *) clause)->inputcollid;
2322
149k
    plain_op = true;
2323
149k
  }
2324
120k
  else if (clause && 
IsA120k
(clause, ScalarArrayOpExpr))
2325
112k
  {
2326
112k
    ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
2327
2328
    /* We only accept ANY clauses, not ALL */
2329
112k
    if (!saop->useOr)
2330
35
      return false;
2331
112k
    leftop = (Node *) linitial(saop->args);
2332
112k
    rightop = (Node *) lsecond(saop->args);
2333
112k
    left_relids = NULL;   /* not actually needed */
2334
112k
    right_relids = pull_varnos(rightop);
2335
112k
    expr_op = saop->opno;
2336
112k
    expr_coll = saop->inputcollid;
2337
112k
    plain_op = false;
2338
112k
  }
2339
8.14k
  else if (clause && 
IsA8.12k
(clause, RowCompareExpr))
2340
199
  {
2341
199
    return match_rowcompare_to_indexcol(index, indexcol,
2342
199
                      opfamily, idxcollation,
2343
199
                      (RowCompareExpr *) clause);
2344
199
  }
2345
7.94k
  else if (index->amsearchnulls && 
IsA7.90k
(clause, NullTest))
2346
309
  {
2347
309
    NullTest   *nt = (NullTest *) clause;
2348
2349
309
    if (!nt->argisrow &&
2350
309
      match_index_to_operand((Node *) nt->arg, indexcol, index))
2351
125
      return true;
2352
184
    return false;
2353
309
  }
2354
7.63k
  else
2355
7.63k
    return false;
2356
2357
  /*
2358
   * Check for clauses of the form: (indexkey operator constant) or
2359
   * (constant operator indexkey).  See above notes about const-ness.
2360
   */
2361
262k
  if (match_index_to_operand(leftop, indexcol, index) &&
2362
262k
    
!bms_is_member(index_relid, right_relids)130k
&&
2363
262k
    
!contain_volatile_functions(rightop)130k
)
2364
130k
  {
2365
130k
    if (is_yb_hash_code_call(leftop)) {
2366
134
        return is_indexable_operator(expr_op,
2367
134
              INTEGER_LSM_FAM_OID, true)
2368
134
            && is_opclause(clause);
2369
134
    }
2370
2371
130k
    if (IndexCollMatchesExprColl(idxcollation, expr_coll)
2372
130k
      && is_indexable_operator(expr_op, opfamily, true))
2373
116k
      return true;
2374
2375
    /*
2376
     * If we didn't find a member of the index's opfamily, see whether it
2377
     * is a "special" indexable operator.
2378
     */
2379
14.0k
    if (plain_op &&
2380
14.1k
      match_special_index_operator(clause, opfamily,
2381
14.1k
                     idxcollation, true))
2382
284
      return true;
2383
13.7k
    return false;
2384
14.0k
  }
2385
2386
131k
  if (plain_op &&
2387
131k
    
match_index_to_operand(rightop, indexcol, index)73.3k
&&
2388
131k
    
!bms_is_member(index_relid, left_relids)1.25k
&&
2389
131k
    
!contain_volatile_functions(leftop)1.25k
)
2390
1.25k
  {
2391
1.25k
    if (is_yb_hash_code_call(rightop)) {
2392
0
        return is_indexable_operator(expr_op,
2393
0
              INTEGER_LSM_FAM_OID, true)
2394
0
            && is_opclause(clause);
2395
0
    }
2396
2397
1.25k
    if (IndexCollMatchesExprColl(idxcollation, expr_coll) &&
2398
1.25k
      is_indexable_operator(expr_op, opfamily, false))
2399
1.23k
      return true;
2400
2401
    /*
2402
     * If we didn't find a member of the index's opfamily, see whether it
2403
     * is a "special" indexable operator.
2404
     */
2405
19
    if (match_special_index_operator(clause, opfamily,
2406
19
                     idxcollation, false))
2407
0
      return true;
2408
19
    return false;
2409
19
  }
2410
2411
130k
  return false;
2412
131k
}
2413
2414
/*
2415
 * is_indexable_operator
2416
 *    Does the operator match the specified index opfamily?
2417
 *
2418
 * If the indexkey is on the right, what we actually want to know
2419
 * is whether the operator has a commutator operator that matches
2420
 * the opfamily.
2421
 */
2422
static bool
2423
is_indexable_operator(Oid expr_op, Oid opfamily, bool indexkey_on_left)
2424
131k
{
2425
  /* Get the commuted operator if necessary */
2426
131k
  if (!indexkey_on_left)
2427
1.25k
  {
2428
1.25k
    expr_op = get_commutator(expr_op);
2429
1.25k
    if (expr_op == InvalidOid)
2430
0
      return false;
2431
1.25k
  }
2432
2433
  /* OK if the (commuted) operator is a member of the index's opfamily */
2434
131k
  return op_in_opfamily(expr_op, opfamily);
2435
131k
}
2436
2437
/*
2438
 * match_rowcompare_to_indexcol()
2439
 *    Handles the RowCompareExpr case for match_clause_to_indexcol(),
2440
 *    which see for comments.
2441
 */
2442
static bool
2443
match_rowcompare_to_indexcol(IndexOptInfo *index,
2444
               int indexcol,
2445
               Oid opfamily,
2446
               Oid idxcollation,
2447
               RowCompareExpr *clause)
2448
199
{
2449
199
  Index   index_relid = index->rel->relid;
2450
199
  Node     *leftop,
2451
199
         *rightop;
2452
199
  Oid     expr_op;
2453
199
  Oid     expr_coll;
2454
2455
  /* Forget it if we're not dealing with a btree or lsm index */
2456
199
  if (index->relam != BTREE_AM_OID && 
index->relam != 197
LSM_AM_OID197
)
2457
0
    return false;
2458
2459
  /*
2460
   * We could do the matching on the basis of insisting that the opfamily
2461
   * shown in the RowCompareExpr be the same as the index column's opfamily,
2462
   * but that could fail in the presence of reverse-sort opfamilies: it'd be
2463
   * a matter of chance whether RowCompareExpr had picked the forward or
2464
   * reverse-sort family.  So look only at the operator, and match if it is
2465
   * a member of the index's opfamily (after commutation, if the indexkey is
2466
   * on the right).  We'll worry later about whether any additional
2467
   * operators are matchable to the index.
2468
   */
2469
199
  leftop = (Node *) linitial(clause->largs);
2470
199
  rightop = (Node *) linitial(clause->rargs);
2471
199
  expr_op = linitial_oid(clause->opnos);
2472
199
  expr_coll = linitial_oid(clause->inputcollids);
2473
2474
  /* Collations must match, if relevant */
2475
199
  if (!IndexCollMatchesExprColl(idxcollation, expr_coll))
2476
0
    return false;
2477
2478
  /*
2479
   * These syntactic tests are the same as in match_clause_to_indexcol()
2480
   */
2481
199
  if (match_index_to_operand(leftop, indexcol, index) &&
2482
199
    
!bms_is_member(index_relid, pull_varnos(rightop))187
&&
2483
199
    
!contain_volatile_functions(rightop)187
)
2484
187
  {
2485
    /* OK, indexkey is on left */
2486
187
  }
2487
12
  else if (match_index_to_operand(rightop, indexcol, index) &&
2488
12
       
!bms_is_member(index_relid, pull_varnos(leftop))0
&&
2489
12
       
!contain_volatile_functions(leftop)0
)
2490
0
  {
2491
    /* indexkey is on right, so commute the operator */
2492
0
    expr_op = get_commutator(expr_op);
2493
0
    if (expr_op == InvalidOid)
2494
0
      return false;
2495
0
  }
2496
12
  else
2497
12
    return false;
2498
2499
  /* We're good if the operator is the right type of opfamily member */
2500
187
  switch (get_op_opfamily_strategy(expr_op, opfamily))
2501
187
  {
2502
39
    case BTLessStrategyNumber:
2503
115
    case BTLessEqualStrategyNumber:
2504
173
    case BTGreaterEqualStrategyNumber:
2505
187
    case BTGreaterStrategyNumber:
2506
187
      return true;
2507
187
  }
2508
2509
0
  return false;
2510
187
}
2511
2512
2513
/****************************************************************************
2514
 *        ----  ROUTINES TO CHECK ORDERING OPERATORS  ----
2515
 ****************************************************************************/
2516
2517
/*
2518
 * match_pathkeys_to_index
2519
 *    Test whether an index can produce output ordered according to the
2520
 *    given pathkeys using "ordering operators".
2521
 *
2522
 * If it can, return a list of suitable ORDER BY expressions, each of the form
2523
 * "indexedcol operator pseudoconstant", along with an integer list of the
2524
 * index column numbers (zero based) that each clause would be used with.
2525
 * NIL lists are returned if the ordering is not achievable this way.
2526
 *
2527
 * On success, the result list is ordered by pathkeys, and in fact is
2528
 * one-to-one with the requested pathkeys.
2529
 */
2530
static void
2531
match_pathkeys_to_index(IndexOptInfo *index, List *pathkeys,
2532
            List **orderby_clauses_p,
2533
            List **clause_columns_p)
2534
3
{
2535
3
  List     *orderby_clauses = NIL;
2536
3
  List     *clause_columns = NIL;
2537
3
  ListCell   *lc1;
2538
2539
3
  *orderby_clauses_p = NIL; /* set default results */
2540
3
  *clause_columns_p = NIL;
2541
2542
  /* Only indexes with the amcanorderbyop property are interesting here */
2543
3
  if (!index->amcanorderbyop)
2544
0
    return;
2545
2546
3
  foreach(lc1, pathkeys)
2547
3
  {
2548
3
    PathKey    *pathkey = (PathKey *) lfirst(lc1);
2549
3
    bool    found = false;
2550
3
    ListCell   *lc2;
2551
2552
    /*
2553
     * Note: for any failure to match, we just return NIL immediately.
2554
     * There is no value in matching just some of the pathkeys.
2555
     */
2556
2557
    /* Pathkey must request default sort order for the target opfamily */
2558
3
    if (pathkey->pk_strategy != BTLessStrategyNumber ||
2559
3
      pathkey->pk_nulls_first)
2560
0
      return;
2561
2562
    /* If eclass is volatile, no hope of using an indexscan */
2563
3
    if (pathkey->pk_eclass->ec_has_volatile)
2564
0
      return;
2565
2566
    /*
2567
     * Try to match eclass member expression(s) to index.  Note that child
2568
     * EC members are considered, but only when they belong to the target
2569
     * relation.  (Unlike regular members, the same expression could be a
2570
     * child member of more than one EC.  Therefore, the same index could
2571
     * be considered to match more than one pathkey list, which is OK
2572
     * here.  See also get_eclass_for_sort_expr.)
2573
     */
2574
3
    foreach(lc2, pathkey->pk_eclass->ec_members)
2575
3
    {
2576
3
      EquivalenceMember *member = (EquivalenceMember *) lfirst(lc2);
2577
3
      int     indexcol;
2578
2579
      /* No possibility of match if it references other relations */
2580
3
      if (!bms_equal(member->em_relids, index->rel->relids))
2581
0
        continue;
2582
2583
      /*
2584
       * We allow any column of the index to match each pathkey; they
2585
       * don't have to match left-to-right as you might expect.  This is
2586
       * correct for GiST, which is the sole existing AM supporting
2587
       * amcanorderbyop.  We might need different logic in future for
2588
       * other implementations.
2589
       */
2590
6
      
for (indexcol = 0; 3
indexcol < index->ncolumns;
indexcol++3
)
2591
3
      {
2592
3
        Expr     *expr;
2593
2594
3
        expr = match_clause_to_ordering_op(index,
2595
3
                           indexcol,
2596
3
                           member->em_expr,
2597
3
                           pathkey->pk_opfamily);
2598
3
        if (expr)
2599
0
        {
2600
0
          orderby_clauses = lappend(orderby_clauses, expr);
2601
0
          clause_columns = lappend_int(clause_columns, indexcol);
2602
0
          found = true;
2603
0
          break;
2604
0
        }
2605
3
      }
2606
2607
3
      if (found)      /* don't want to look at remaining members */
2608
0
        break;
2609
3
    }
2610
2611
3
    if (!found)       /* fail if no match for this pathkey */
2612
3
      return;
2613
3
  }
2614
2615
0
  *orderby_clauses_p = orderby_clauses; /* success! */
2616
0
  *clause_columns_p = clause_columns;
2617
0
}
2618
2619
/*
2620
 * match_clause_to_ordering_op
2621
 *    Determines whether an ordering operator expression matches an
2622
 *    index column.
2623
 *
2624
 *    This is similar to, but simpler than, match_clause_to_indexcol.
2625
 *    We only care about simple OpExpr cases.  The input is a bare
2626
 *    expression that is being ordered by, which must be of the form
2627
 *    (indexkey op const) or (const op indexkey) where op is an ordering
2628
 *    operator for the column's opfamily.
2629
 *
2630
 * 'index' is the index of interest.
2631
 * 'indexcol' is a column number of 'index' (counting from 0).
2632
 * 'clause' is the ordering expression to be tested.
2633
 * 'pk_opfamily' is the btree opfamily describing the required sort order.
2634
 *
2635
 * Note that we currently do not consider the collation of the ordering
2636
 * operator's result.  In practical cases the result type will be numeric
2637
 * and thus have no collation, and it's not very clear what to match to
2638
 * if it did have a collation.  The index's collation should match the
2639
 * ordering operator's input collation, not its result.
2640
 *
2641
 * If successful, return 'clause' as-is if the indexkey is on the left,
2642
 * otherwise a commuted copy of 'clause'.  If no match, return NULL.
2643
 */
2644
static Expr *
2645
match_clause_to_ordering_op(IndexOptInfo *index,
2646
              int indexcol,
2647
              Expr *clause,
2648
              Oid pk_opfamily)
2649
3
{
2650
3
  Oid     opfamily;
2651
3
  Oid     idxcollation;
2652
3
  Node     *leftop,
2653
3
         *rightop;
2654
3
  Oid     expr_op;
2655
3
  Oid     expr_coll;
2656
3
  Oid     sortfamily;
2657
3
  bool    commuted;
2658
2659
3
  Assert(indexcol < index->nkeycolumns);
2660
2661
3
  opfamily = index->opfamily[indexcol];
2662
3
  idxcollation = index->indexcollations[indexcol];
2663
2664
  /*
2665
   * Clause must be a binary opclause.
2666
   */
2667
3
  if (!is_opclause(clause))
2668
3
    return NULL;
2669
0
  leftop = get_leftop(clause);
2670
0
  rightop = get_rightop(clause);
2671
0
  if (!leftop || !rightop)
2672
0
    return NULL;
2673
0
  expr_op = ((OpExpr *) clause)->opno;
2674
0
  expr_coll = ((OpExpr *) clause)->inputcollid;
2675
2676
  /*
2677
   * We can forget the whole thing right away if wrong collation.
2678
   */
2679
0
  if (!IndexCollMatchesExprColl(idxcollation, expr_coll))
2680
0
    return NULL;
2681
2682
  /*
2683
   * Check for clauses of the form: (indexkey operator constant) or
2684
   * (constant operator indexkey).
2685
   */
2686
0
  if (match_index_to_operand(leftop, indexcol, index) &&
2687
0
    !contain_var_clause(rightop) &&
2688
0
    !contain_volatile_functions(rightop))
2689
0
  {
2690
0
    commuted = false;
2691
0
  }
2692
0
  else if (match_index_to_operand(rightop, indexcol, index) &&
2693
0
       !contain_var_clause(leftop) &&
2694
0
       !contain_volatile_functions(leftop))
2695
0
  {
2696
    /* Might match, but we need a commuted operator */
2697
0
    expr_op = get_commutator(expr_op);
2698
0
    if (expr_op == InvalidOid)
2699
0
      return NULL;
2700
0
    commuted = true;
2701
0
  }
2702
0
  else
2703
0
    return NULL;
2704
2705
  /*
2706
   * Is the (commuted) operator an ordering operator for the opfamily? And
2707
   * if so, does it yield the right sorting semantics?
2708
   */
2709
0
  sortfamily = get_op_opfamily_sortfamily(expr_op, opfamily);
2710
0
  if (sortfamily != pk_opfamily)
2711
0
    return NULL;
2712
2713
  /* We have a match.  Return clause or a commuted version thereof. */
2714
0
  if (commuted)
2715
0
  {
2716
0
    OpExpr     *newclause = makeNode(OpExpr);
2717
2718
    /* flat-copy all the fields of clause */
2719
0
    memcpy(newclause, clause, sizeof(OpExpr));
2720
2721
    /* commute it */
2722
0
    newclause->opno = expr_op;
2723
0
    newclause->opfuncid = InvalidOid;
2724
0
    newclause->args = list_make2(rightop, leftop);
2725
2726
0
    clause = (Expr *) newclause;
2727
0
  }
2728
2729
0
  return clause;
2730
0
}
2731
2732
2733
/****************************************************************************
2734
 *        ----  ROUTINES TO DO PARTIAL INDEX PREDICATE TESTS  ----
2735
 ****************************************************************************/
2736
2737
/*
2738
 * check_index_predicates
2739
 *    Set the predicate-derived IndexOptInfo fields for each index
2740
 *    of the specified relation.
2741
 *
2742
 * predOK is set true if the index is partial and its predicate is satisfied
2743
 * for this query, ie the query's WHERE clauses imply the predicate.
2744
 *
2745
 * indrestrictinfo is set to the relation's baserestrictinfo list less any
2746
 * conditions that are implied by the index's predicate.  (Obviously, for a
2747
 * non-partial index, this is the same as baserestrictinfo.)  Such conditions
2748
 * can be dropped from the plan when using the index, in certain cases.
2749
 *
2750
 * At one time it was possible for this to get re-run after adding more
2751
 * restrictions to the rel, thus possibly letting us prove more indexes OK.
2752
 * That doesn't happen any more (at least not in the core code's usage),
2753
 * but this code still supports it in case extensions want to mess with the
2754
 * baserestrictinfo list.  We assume that adding more restrictions can't make
2755
 * an index not predOK.  We must recompute indrestrictinfo each time, though,
2756
 * to make sure any newly-added restrictions get into it if needed.
2757
 */
2758
void
2759
check_index_predicates(PlannerInfo *root, RelOptInfo *rel)
2760
160k
{
2761
160k
  List     *clauselist;
2762
160k
  bool    have_partial;
2763
160k
  bool    is_target_rel;
2764
160k
  Relids    otherrels;
2765
160k
  ListCell   *lc;
2766
2767
  /* Indexes are available only on base or "other" member relations. */
2768
160k
  Assert(IS_SIMPLE_REL(rel));
2769
2770
  /*
2771
   * Initialize the indrestrictinfo lists to be identical to
2772
   * baserestrictinfo, and check whether there are any partial indexes.  If
2773
   * not, this is all we need to do.
2774
   */
2775
160k
  have_partial = false;
2776
160k
  foreach(lc, rel->indexlist)
2777
220k
  {
2778
220k
    IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
2779
2780
220k
    index->indrestrictinfo = rel->baserestrictinfo;
2781
220k
    if (index->indpred)
2782
321
      have_partial = true;
2783
220k
  }
2784
160k
  if (!have_partial)
2785
160k
    return;
2786
2787
  /*
2788
   * Construct a list of clauses that we can assume true for the purpose of
2789
   * proving the index(es) usable.  Restriction clauses for the rel are
2790
   * always usable, and so are any join clauses that are "movable to" this
2791
   * rel.  Also, we can consider any EC-derivable join clauses (which must
2792
   * be "movable to" this rel, by definition).
2793
   */
2794
402
  clauselist = list_copy(rel->baserestrictinfo);
2795
2796
  /* Scan the rel's join clauses */
2797
402
  foreach(lc, rel->joininfo)
2798
0
  {
2799
0
    RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
2800
2801
    /* Check if clause can be moved to this rel */
2802
0
    if (!join_clause_is_movable_to(rinfo, rel))
2803
0
      continue;
2804
2805
0
    clauselist = lappend(clauselist, rinfo);
2806
0
  }
2807
2808
  /*
2809
   * Add on any equivalence-derivable join clauses.  Computing the correct
2810
   * relid sets for generate_join_implied_equalities is slightly tricky
2811
   * because the rel could be a child rel rather than a true baserel, and in
2812
   * that case we must remove its parents' relid(s) from all_baserels.
2813
   */
2814
402
  if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
2815
0
    otherrels = bms_difference(root->all_baserels,
2816
0
                   find_childrel_parents(root, rel));
2817
402
  else
2818
402
    otherrels = bms_difference(root->all_baserels, rel->relids);
2819
2820
402
  if (!bms_is_empty(otherrels))
2821
0
    clauselist =
2822
0
      list_concat(clauselist,
2823
0
            generate_join_implied_equalities(root,
2824
0
                             bms_union(rel->relids,
2825
0
                                   otherrels),
2826
0
                             otherrels,
2827
0
                             rel));
2828
2829
  /*
2830
   * Normally we remove quals that are implied by a partial index's
2831
   * predicate from indrestrictinfo, indicating that they need not be
2832
   * checked explicitly by an indexscan plan using this index.  However, if
2833
   * the rel is a target relation of UPDATE/DELETE/SELECT FOR UPDATE, we
2834
   * cannot remove such quals from the plan, because they need to be in the
2835
   * plan so that they will be properly rechecked by EvalPlanQual testing.
2836
   * Some day we might want to remove such quals from the main plan anyway
2837
   * and pass them through to EvalPlanQual via a side channel; but for now,
2838
   * we just don't remove implied quals at all for target relations.
2839
   */
2840
402
  is_target_rel = (rel->relid == root->parse->resultRelation ||
2841
402
           
get_plan_rowmark(root->rowMarks, rel->relid) != NULL175
);
2842
2843
  /*
2844
   * Now try to prove each index predicate true, and compute the
2845
   * indrestrictinfo lists for partial indexes.  Note that we compute the
2846
   * indrestrictinfo list even for non-predOK indexes; this might seem
2847
   * wasteful, but we may be able to use such indexes in OR clauses, cf
2848
   * generate_bitmap_or_paths().
2849
   */
2850
402
  foreach(lc, rel->indexlist)
2851
679
  {
2852
679
    IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
2853
679
    ListCell   *lcr;
2854
2855
679
    if (index->indpred == NIL)
2856
358
      continue;      /* ignore non-partial indexes here */
2857
2858
321
    if (!index->predOK)   /* don't repeat work if already proven OK */
2859
321
      index->predOK = predicate_implied_by(index->indpred, clauselist,
2860
321
                         false);
2861
2862
    /* If rel is an update target, leave indrestrictinfo as set above */
2863
321
    if (is_target_rel)
2864
14
      continue;
2865
2866
    /* Else compute indrestrictinfo as the non-implied quals */
2867
307
    index->indrestrictinfo = NIL;
2868
307
    foreach(lcr, rel->baserestrictinfo)
2869
374
    {
2870
374
      RestrictInfo *rinfo = (RestrictInfo *) lfirst(lcr);
2871
2872
      /* predicate_implied_by() assumes first arg is immutable */
2873
374
      if (contain_mutable_functions((Node *) rinfo->clause) ||
2874
374
        !predicate_implied_by(list_make1(rinfo->clause),
2875
374
                    index->indpred, false))
2876
326
        index->indrestrictinfo = lappend(index->indrestrictinfo, rinfo);
2877
374
    }
2878
307
  }
2879
402
}
2880
2881
/****************************************************************************
2882
 *        ----  ROUTINES TO CHECK EXTERNALLY-VISIBLE CONDITIONS  ----
2883
 ****************************************************************************/
2884
2885
/*
2886
 * ec_member_matches_indexcol
2887
 *    Test whether an EquivalenceClass member matches an index column.
2888
 *
2889
 * This is a callback for use by generate_implied_equalities_for_column.
2890
 */
2891
static bool
2892
ec_member_matches_indexcol(PlannerInfo *root, RelOptInfo *rel,
2893
               EquivalenceClass *ec, EquivalenceMember *em,
2894
               void *arg)
2895
20.8k
{
2896
20.8k
  IndexOptInfo *index = ((ec_member_matches_arg *) arg)->index;
2897
20.8k
  int     indexcol = ((ec_member_matches_arg *) arg)->indexcol;
2898
20.8k
  Oid     curFamily;
2899
20.8k
  Oid     curCollation;
2900
2901
20.8k
  Assert(indexcol < index->nkeycolumns);
2902
2903
20.8k
  curFamily = index->opfamily[indexcol];
2904
20.8k
  curCollation = index->indexcollations[indexcol];
2905
2906
  /*
2907
   * If it's a btree or lsm index, we can reject it if its opfamily isn't
2908
   * compatible with the EC, since no clause generated from the EC could be
2909
   * used with the index.  For non-btree indexes, we can't easily tell
2910
   * whether clauses generated from the EC could be used with the index, so
2911
   * don't check the opfamily.  This might mean we return "true" for a
2912
   * useless EC, so we have to recheck the results of
2913
   * generate_implied_equalities_for_column; see
2914
   * match_eclass_clauses_to_index.
2915
   */
2916
20.8k
  if ((index->relam == BTREE_AM_OID || 
index->relam == 20.8k
LSM_AM_OID20.8k
) &&
2917
20.8k
    !list_member_oid(ec->ec_opfamilies, curFamily))
2918
4.40k
    return false;
2919
2920
  /* We insist on collation match for all index types, though */
2921
16.4k
  if (!IndexCollMatchesExprColl(curCollation, ec->ec_collation))
2922
3
    return false;
2923
2924
16.4k
  return match_index_to_operand((Node *) em->em_expr, indexcol, index);
2925
16.4k
}
2926
2927
/*
2928
 * relation_has_unique_index_for
2929
 *    Determine whether the relation provably has at most one row satisfying
2930
 *    a set of equality conditions, because the conditions constrain all
2931
 *    columns of some unique index.
2932
 *
2933
 * The conditions can be represented in either or both of two ways:
2934
 * 1. A list of RestrictInfo nodes, where the caller has already determined
2935
 * that each condition is a mergejoinable equality with an expression in
2936
 * this relation on one side, and an expression not involving this relation
2937
 * on the other.  The transient outer_is_left flag is used to identify which
2938
 * side we should look at: left side if outer_is_left is false, right side
2939
 * if it is true.
2940
 * 2. A list of expressions in this relation, and a corresponding list of
2941
 * equality operators. The caller must have already checked that the operators
2942
 * represent equality.  (Note: the operators could be cross-type; the
2943
 * expressions should correspond to their RHS inputs.)
2944
 *
2945
 * The caller need only supply equality conditions arising from joins;
2946
 * this routine automatically adds in any usable baserestrictinfo clauses.
2947
 * (Note that the passed-in restrictlist will be destructively modified!)
2948
 */
2949
bool
2950
relation_has_unique_index_for(PlannerInfo *root, RelOptInfo *rel,
2951
                List *restrictlist,
2952
                List *exprlist, List *oprlist)
2953
16.3k
{
2954
16.3k
  ListCell   *ic;
2955
2956
16.3k
  Assert(list_length(exprlist) == list_length(oprlist));
2957
2958
  /* Short-circuit if no indexes... */
2959
16.3k
  if (rel->indexlist == NIL)
2960
28
    return false;
2961
2962
  /*
2963
   * Examine the rel's restriction clauses for usable var = const clauses
2964
   * that we can add to the restrictlist.
2965
   */
2966
16.2k
  foreach(ic, rel->baserestrictinfo)
2967
11.5k
  {
2968
11.5k
    RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(ic);
2969
2970
    /*
2971
     * Note: can_join won't be set for a restriction clause, but
2972
     * mergeopfamilies will be if it has a mergejoinable operator and
2973
     * doesn't contain volatile functions.
2974
     */
2975
11.5k
    if (restrictinfo->mergeopfamilies == NIL)
2976
3.83k
      continue;      /* not mergejoinable */
2977
2978
    /*
2979
     * The clause certainly doesn't refer to anything but the given rel.
2980
     * If either side is pseudoconstant then we can use it.
2981
     */
2982
7.73k
    if (bms_is_empty(restrictinfo->left_relids))
2983
168
    {
2984
      /* righthand side is inner */
2985
168
      restrictinfo->outer_is_left = true;
2986
168
    }
2987
7.56k
    else if (bms_is_empty(restrictinfo->right_relids))
2988
7.56k
    {
2989
      /* lefthand side is inner */
2990
7.56k
      restrictinfo->outer_is_left = false;
2991
7.56k
    }
2992
0
    else
2993
0
      continue;
2994
2995
    /* OK, add to list */
2996
7.73k
    restrictlist = lappend(restrictlist, restrictinfo);
2997
7.73k
  }
2998
2999
  /* Short-circuit the easy case */
3000
16.2k
  if (restrictlist == NIL && 
exprlist == 54
NIL54
)
3001
45
    return false;
3002
3003
  /* Examine each index of the relation ... */
3004
16.2k
  foreach(ic, rel->indexlist)
3005
28.8k
  {
3006
28.8k
    IndexOptInfo *ind = (IndexOptInfo *) lfirst(ic);
3007
28.8k
    int     c;
3008
3009
    /*
3010
     * If the index is not unique, or not immediately enforced, or if it's
3011
     * a partial index that doesn't match the query, it's useless here.
3012
     */
3013
28.8k
    if (!ind->unique || 
!ind->immediate21.2k
||
3014
28.8k
      
(21.2k
ind->indpred != 21.2k
NIL21.2k
&&
!ind->predOK0
))
3015
7.62k
      continue;
3016
3017
    /*
3018
     * Try to find each index column in the lists of conditions.  This is
3019
     * O(N^2) or worse, but we expect all the lists to be short.
3020
     */
3021
40.0k
    
for (c = 0; 21.2k
c < ind->ncolumns;
c++18.8k
)
3022
27.4k
    {
3023
27.4k
      bool    matched = false;
3024
27.4k
      ListCell   *lc;
3025
27.4k
      ListCell   *lc2;
3026
3027
27.4k
      foreach(lc, restrictlist)
3028
39.1k
      {
3029
39.1k
        RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
3030
39.1k
        Node     *rexpr;
3031
3032
        /*
3033
         * The condition's equality operator must be a member of the
3034
         * index opfamily, else it is not asserting the right kind of
3035
         * equality behavior for this index.  We check this first
3036
         * since it's probably cheaper than match_index_to_operand().
3037
         */
3038
39.1k
        if (!list_member_oid(rinfo->mergeopfamilies, ind->opfamily[c]))
3039
8.14k
          continue;
3040
3041
        /*
3042
         * XXX at some point we may need to check collations here too.
3043
         * For the moment we assume all collations reduce to the same
3044
         * notion of equality.
3045
         */
3046
3047
        /* OK, see if the condition operand matches the index key */
3048
30.9k
        if (rinfo->outer_is_left)
3049
15.1k
          rexpr = get_rightop(rinfo->clause);
3050
15.7k
        else
3051
15.7k
          rexpr = get_leftop(rinfo->clause);
3052
3053
30.9k
        if (match_index_to_operand(rexpr, c, ind))
3054
18.8k
        {
3055
18.8k
          matched = true; /* column is unique */
3056
18.8k
          break;
3057
18.8k
        }
3058
30.9k
      }
3059
3060
27.4k
      if (matched)
3061
18.8k
        continue;
3062
3063
8.63k
      forboth(lc, exprlist, lc2, oprlist)
3064
0
      {
3065
0
        Node     *expr = (Node *) lfirst(lc);
3066
0
        Oid     opr = lfirst_oid(lc2);
3067
3068
        /* See if the expression matches the index key */
3069
0
        if (!match_index_to_operand(expr, c, ind))
3070
0
          continue;
3071
3072
        /*
3073
         * The equality operator must be a member of the index
3074
         * opfamily, else it is not asserting the right kind of
3075
         * equality behavior for this index.  We assume the caller
3076
         * determined it is an equality operator, so we don't need to
3077
         * check any more tightly than this.
3078
         */
3079
0
        if (!op_in_opfamily(opr, ind->opfamily[c]))
3080
0
          continue;
3081
3082
        /*
3083
         * XXX at some point we may need to check collations here too.
3084
         * For the moment we assume all collations reduce to the same
3085
         * notion of equality.
3086
         */
3087
3088
0
        matched = true; /* column is unique */
3089
0
        break;
3090
0
      }
3091
3092
8.63k
      if (!matched)
3093
8.63k
        break;     /* no match; this index doesn't help us */
3094
8.63k
    }
3095
3096
    /* Matched all columns of this index? */
3097
21.2k
    if (c == ind->ncolumns)
3098
12.5k
      return true;
3099
21.2k
  }
3100
3101
3.65k
  return false;
3102
16.2k
}
3103
3104
/*
3105
 * indexcol_is_bool_constant_for_query
3106
 *
3107
 * If an index column is constrained to have a constant value by the query's
3108
 * WHERE conditions, then it's irrelevant for sort-order considerations.
3109
 * Usually that means we have a restriction clause WHERE indexcol = constant,
3110
 * which gets turned into an EquivalenceClass containing a constant, which
3111
 * is recognized as redundant by build_index_pathkeys().  But if the index
3112
 * column is a boolean variable (or expression), then we are not going to
3113
 * see WHERE indexcol = constant, because expression preprocessing will have
3114
 * simplified that to "WHERE indexcol" or "WHERE NOT indexcol".  So we are not
3115
 * going to have a matching EquivalenceClass (unless the query also contains
3116
 * "ORDER BY indexcol").  To allow such cases to work the same as they would
3117
 * for non-boolean values, this function is provided to detect whether the
3118
 * specified index column matches a boolean restriction clause.
3119
 */
3120
bool
3121
indexcol_is_bool_constant_for_query(IndexOptInfo *index, int indexcol)
3122
31.5k
{
3123
31.5k
  ListCell   *lc;
3124
3125
  /* If the index isn't boolean, we can't possibly get a match */
3126
31.5k
  if (!IsBooleanOpfamily(index->opfamily[indexcol]))
3127
31.5k
    return false;
3128
3129
  /* Check each restriction clause for the index's rel */
3130
0
  foreach(lc, index->rel->baserestrictinfo)
3131
0
  {
3132
0
    RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
3133
3134
    /*
3135
     * As in match_clause_to_indexcol, never match pseudoconstants to
3136
     * indexes.  (It might be semantically okay to do so here, but the
3137
     * odds of getting a match are negligible, so don't waste the cycles.)
3138
     */
3139
0
    if (rinfo->pseudoconstant)
3140
0
      continue;
3141
3142
    /* See if we can match the clause's expression to the index column */
3143
0
    if (match_boolean_index_clause((Node *) rinfo->clause, indexcol, index))
3144
0
      return true;
3145
0
  }
3146
3147
0
  return false;
3148
0
}
3149
3150
3151
/****************************************************************************
3152
 *        ----  ROUTINES TO CHECK OPERANDS  ----
3153
 ****************************************************************************/
3154
3155
/*
3156
 * match_index_to_operand()
3157
 *    Generalized test for a match between an index's key
3158
 *    and the operand on one side of a restriction or join clause.
3159
 *
3160
 * operand: the nodetree to be compared to the index
3161
 * indexcol: the column number of the index (counting from 0)
3162
 * index: the index of interest
3163
 *
3164
 * Note that we aren't interested in collations here; the caller must check
3165
 * for a collation match, if it's dealing with an operator where that matters.
3166
 *
3167
 * This is exported for use in selfuncs.c.
3168
 */
3169
bool
3170
match_index_to_operand(Node *operand,
3171
             int indexcol,
3172
             IndexOptInfo *index)
3173
518k
{
3174
518k
  int     indkey;
3175
3176
  /*
3177
   * Ignore any RelabelType node above the operand.   This is needed to be
3178
   * able to apply indexscanning in binary-compatible-operator cases. Note:
3179
   * we can assume there is at most one RelabelType node;
3180
   * eval_const_expressions() will have simplified if more than one.
3181
   */
3182
518k
  if (
operand518k
&& IsA(operand, RelabelType))
3183
431
    operand = (Node *) ((RelabelType *) operand)->arg;
3184
3185
518k
  indkey = index->indexkeys[indexcol];
3186
518k
  if (indkey != 0)
3187
518k
  {
3188
3189
518k
    if (
operand518k
&& IsA(operand, FuncExpr))
3190
1.09k
    {
3191
      /*
3192
       * YB: Forming an estimate to see if this call can be pushed down
3193
       * by assessing whether or not its parameters are all column
3194
       * variables and whether or not the number of arguments to the call
3195
       * is the same as the number of hash columns in the primary key
3196
       * of the index in question
3197
       */
3198
1.09k
      FuncExpr *fn = (FuncExpr *) operand;
3199
1.09k
      if (fn->funcid == YB_HASH_CODE_OID
3200
1.09k
        && 
fn->args->length > 0963
3201
1.09k
        && 
index->nhashcolumns == fn->args->length963
)
3202
641
      {
3203
641
        Relation indrel = RelationIdGetRelation(index->indexoid);
3204
641
        Bitmapset *hash_keys = NULL;
3205
641
        for (int natt = 1;
3206
2.77k
            natt <= indrel->rd_index->indnkeyatts; 
natt++2.13k
)
3207
2.13k
        {
3208
2.13k
          if (indrel->rd_indoption[natt - 1] & INDOPTION_HASH)
3209
1.33k
          {
3210
1.33k
            int table_att = index->indexkeys[natt - 1];
3211
1.33k
            hash_keys = bms_add_member(hash_keys,
3212
1.33k
                    YBAttnumToBmsIndex(indrel, table_att));
3213
1.33k
          }
3214
2.13k
        }
3215
641
        ListCell *ls;
3216
641
        bool can_pushdown_hash_call = true;
3217
641
        Bitmapset *args_bms = NULL;
3218
641
        int last_index_att = -1;
3219
641
        foreach(ls, fn->args)
3220
1.12k
        {
3221
1.12k
          Expr *arg = (Expr *) lfirst(ls);
3222
1.12k
          if (!IsA(arg, Var))
3223
0
          {
3224
0
            can_pushdown_hash_call = false;
3225
0
            break;
3226
0
          }
3227
3228
1.12k
          Var *var = (Var *) arg;
3229
3230
1.12k
          if (index->rel->relid != var->varno)
3231
0
          {
3232
0
            can_pushdown_hash_call = false;
3233
0
            break;
3234
0
          }
3235
3236
          /* YB: Need to make sure that the arguments to
3237
           * yb_hash_code are in the correct order
3238
           * we can make this for loop to map from index att
3239
           * to table att slightly more efficient by starting the
3240
           * loop from last_index_att */
3241
1.12k
          int index_att = -1;
3242
1.12k
          for (int natt = 1;
3243
3.30k
            natt <= indrel->rd_index->indnkeyatts; 
natt++2.17k
)
3244
3.01k
          {
3245
3.01k
            int cand_table_att = index->indexkeys[natt - 1];
3246
3.01k
            if (cand_table_att == var->varattno)
3247
842
            {
3248
842
              index_att = natt;
3249
842
              break;
3250
842
            }
3251
3.01k
          }
3252
3253
1.12k
          if (index_att <= last_index_att) {
3254
349
            can_pushdown_hash_call = false;
3255
349
            break;
3256
778
          } else {
3257
778
            last_index_att = index_att;
3258
778
          }
3259
3260
778
          int arg_bms_index = YBAttnumToBmsIndex(indrel,
3261
778
                              var->varattno);
3262
778
          args_bms = bms_add_member(args_bms, arg_bms_index);
3263
778
        }
3264
641
        can_pushdown_hash_call &= bms_equal(args_bms, hash_keys);
3265
3266
641
        RelationClose(indrel);
3267
641
        bms_free(args_bms);
3268
641
        bms_free(hash_keys);
3269
641
        return can_pushdown_hash_call;
3270
641
      }
3271
1.09k
    }
3272
    /*
3273
     * Simple index column; operand must be a matching Var.
3274
     */
3275
517k
    
if (517k
operand517k
&& IsA(operand, Var) &&
3276
517k
      
index->rel->relid == ((Var *) operand)->varno449k
&&
3277
517k
      
indkey == ((Var *) operand)->varattno441k
)
3278
292k
      return true;
3279
517k
  }
3280
537
  else
3281
537
  {
3282
    /*
3283
     * Index expression; find the correct expression.  (This search could
3284
     * be avoided, at the cost of complicating all the callers of this
3285
     * routine; doesn't seem worth it.)
3286
     */
3287
537
    ListCell   *indexpr_item;
3288
537
    int     i;
3289
537
    Node     *indexkey;
3290
3291
537
    indexpr_item = list_head(index->indexprs);
3292
585
    for (i = 0; i < indexcol; 
i++48
)
3293
48
    {
3294
48
      if (index->indexkeys[i] == 0)
3295
0
      {
3296
0
        if (indexpr_item == NULL)
3297
0
          elog(ERROR, "wrong number of index expressions");
3298
0
        indexpr_item = lnext(indexpr_item);
3299
0
      }
3300
48
    }
3301
537
    if (indexpr_item == NULL)
3302
0
      elog(ERROR, "wrong number of index expressions");
3303
537
    indexkey = (Node *) lfirst(indexpr_item);
3304
3305
    /*
3306
     * Does it match the operand?  Again, strip any relabeling.
3307
     */
3308
537
    if (indexkey && 
IsA419
(indexkey, RelabelType))
3309
0
      indexkey = (Node *) ((RelabelType *) indexkey)->arg;
3310
3311
537
    if (equal(indexkey, operand))
3312
155
      return true;
3313
537
  }
3314
3315
225k
  return false;
3316
518k
}
3317
3318
/****************************************************************************
3319
 *      ----  ROUTINES FOR "SPECIAL" INDEXABLE OPERATORS  ----
3320
 ****************************************************************************/
3321
3322
/*
3323
 * These routines handle special optimization of operators that can be
3324
 * used with index scans even though they are not known to the executor's
3325
 * indexscan machinery.  The key idea is that these operators allow us
3326
 * to derive approximate indexscan qual clauses, such that any tuples
3327
 * that pass the operator clause itself must also satisfy the simpler
3328
 * indexscan condition(s).  Then we can use the indexscan machinery
3329
 * to avoid scanning as much of the table as we'd otherwise have to,
3330
 * while applying the original operator as a qpqual condition to ensure
3331
 * we deliver only the tuples we want.  (In essence, we're using a regular
3332
 * index as if it were a lossy index.)
3333
 *
3334
 * An example of what we're doing is
3335
 *      textfield LIKE 'abc%'
3336
 * from which we can generate the indexscanable conditions
3337
 *      textfield >= 'abc' AND textfield < 'abd'
3338
 * which allow efficient scanning of an index on textfield.
3339
 * (In reality, character set and collation issues make the transformation
3340
 * from LIKE to indexscan limits rather harder than one might think ...
3341
 * but that's the basic idea.)
3342
 *
3343
 * Another thing that we do with this machinery is to provide special
3344
 * smarts for "boolean" indexes (that is, indexes on boolean columns
3345
 * that support boolean equality).  We can transform a plain reference
3346
 * to the indexkey into "indexkey = true", or "NOT indexkey" into
3347
 * "indexkey = false", so as to make the expression indexable using the
3348
 * regular index operators.  (As of Postgres 8.1, we must do this here
3349
 * because constant simplification does the reverse transformation;
3350
 * without this code there'd be no way to use such an index at all.)
3351
 *
3352
 * Three routines are provided here:
3353
 *
3354
 * match_special_index_operator() is just an auxiliary function for
3355
 * match_clause_to_indexcol(); after the latter fails to recognize a
3356
 * restriction opclause's operator as a member of an index's opfamily,
3357
 * it asks match_special_index_operator() whether the clause should be
3358
 * considered an indexqual anyway.
3359
 *
3360
 * match_boolean_index_clause() similarly detects clauses that can be
3361
 * converted into boolean equality operators.
3362
 *
3363
 * expand_indexqual_conditions() converts a list of RestrictInfo nodes
3364
 * (with implicit AND semantics across list elements) into a list of clauses
3365
 * that the executor can actually handle.  For operators that are members of
3366
 * the index's opfamily this transformation is a no-op, but clauses recognized
3367
 * by match_special_index_operator() or match_boolean_index_clause() must be
3368
 * converted into one or more "regular" indexqual conditions.
3369
 */
3370
3371
/*
3372
 * match_boolean_index_clause
3373
 *    Recognize restriction clauses that can be matched to a boolean index.
3374
 *
3375
 * This should be called only when IsBooleanOpfamily() recognizes the
3376
 * index's operator family.  We check to see if the clause matches the
3377
 * index's key.
3378
 */
3379
static bool
3380
match_boolean_index_clause(Node *clause,
3381
               int indexcol,
3382
               IndexOptInfo *index)
3383
0
{
3384
  /* Direct match? */
3385
0
  if (match_index_to_operand(clause, indexcol, index))
3386
0
    return true;
3387
  /* NOT clause? */
3388
0
  if (not_clause(clause))
3389
0
  {
3390
0
    if (match_index_to_operand((Node *) get_notclausearg((Expr *) clause),
3391
0
                   indexcol, index))
3392
0
      return true;
3393
0
  }
3394
3395
  /*
3396
   * Since we only consider clauses at top level of WHERE, we can convert
3397
   * indexkey IS TRUE and indexkey IS FALSE to index searches as well. The
3398
   * different meaning for NULL isn't important.
3399
   */
3400
0
  else if (clause && IsA(clause, BooleanTest))
3401
0
  {
3402
0
    BooleanTest *btest = (BooleanTest *) clause;
3403
3404
0
    if (btest->booltesttype == IS_TRUE ||
3405
0
      btest->booltesttype == IS_FALSE)
3406
0
      if (match_index_to_operand((Node *) btest->arg,
3407
0
                     indexcol, index))
3408
0
        return true;
3409
0
  }
3410
0
  return false;
3411
0
}
3412
3413
/*
3414
 * match_special_index_operator
3415
 *    Recognize restriction clauses that can be used to generate
3416
 *    additional indexscanable qualifications.
3417
 *
3418
 * The given clause is already known to be a binary opclause having
3419
 * the form (indexkey OP pseudoconst) or (pseudoconst OP indexkey),
3420
 * but the OP proved not to be one of the index's opfamily operators.
3421
 * Return 'true' if we can do something with it anyway.
3422
 */
3423
static bool
3424
match_special_index_operator(Expr *clause, Oid opfamily, Oid idxcollation,
3425
               bool indexkey_on_left)
3426
14.1k
{
3427
14.1k
  bool    isIndexable = false;
3428
14.1k
  Node     *rightop;
3429
14.1k
  Oid     expr_op;
3430
14.1k
  Oid     expr_coll;
3431
14.1k
  Const    *patt;
3432
14.1k
  Const    *prefix = NULL;
3433
14.1k
  Pattern_Prefix_Status pstatus = Pattern_Prefix_None;
3434
3435
  /*
3436
   * Currently, all known special operators require the indexkey on the
3437
   * left, but this test could be pushed into the switch statement if some
3438
   * are added that do not...
3439
   */
3440
14.1k
  if (!indexkey_on_left)
3441
19
    return false;
3442
3443
  /* we know these will succeed */
3444
14.1k
  rightop = get_rightop(clause);
3445
14.1k
  expr_op = ((OpExpr *) clause)->opno;
3446
14.1k
  expr_coll = ((OpExpr *) clause)->inputcollid;
3447
3448
  /* again, required for all current special ops: */
3449
14.1k
  if (!IsA(rightop, Const) ||
3450
14.1k
    
((Const *) rightop)->constisnull14.1k
)
3451
10
    return false;
3452
14.1k
  patt = (Const *) rightop;
3453
3454
14.1k
  switch (expr_op)
3455
14.1k
  {
3456
20
    case OID_TEXT_LIKE_OP:
3457
20
    case OID_BPCHAR_LIKE_OP:
3458
69
    case OID_NAME_LIKE_OP:
3459
      /* the right-hand const is type text for all of these */
3460
69
      pstatus = pattern_fixed_prefix(patt, Pattern_Type_Like, expr_coll,
3461
69
                       &prefix, NULL);
3462
69
      isIndexable = (pstatus != Pattern_Prefix_None);
3463
69
      break;
3464
3465
0
    case OID_BYTEA_LIKE_OP:
3466
0
      pstatus = pattern_fixed_prefix(patt, Pattern_Type_Like, expr_coll,
3467
0
                       &prefix, NULL);
3468
0
      isIndexable = (pstatus != Pattern_Prefix_None);
3469
0
      break;
3470
3471
0
    case OID_TEXT_ICLIKE_OP:
3472
0
    case OID_BPCHAR_ICLIKE_OP:
3473
1
    case OID_NAME_ICLIKE_OP:
3474
      /* the right-hand const is type text for all of these */
3475
1
      pstatus = pattern_fixed_prefix(patt, Pattern_Type_Like_IC, expr_coll,
3476
1
                       &prefix, NULL);
3477
1
      isIndexable = (pstatus != Pattern_Prefix_None);
3478
1
      break;
3479
3480
0
    case OID_TEXT_REGEXEQ_OP:
3481
6
    case OID_BPCHAR_REGEXEQ_OP:
3482
230
    case OID_NAME_REGEXEQ_OP:
3483
      /* the right-hand const is type text for all of these */
3484
230
      pstatus = pattern_fixed_prefix(patt, Pattern_Type_Regex, expr_coll,
3485
230
                       &prefix, NULL);
3486
230
      isIndexable = (pstatus != Pattern_Prefix_None);
3487
230
      break;
3488
3489
0
    case OID_TEXT_ICREGEXEQ_OP:
3490
0
    case OID_BPCHAR_ICREGEXEQ_OP:
3491
1
    case OID_NAME_ICREGEXEQ_OP:
3492
      /* the right-hand const is type text for all of these */
3493
1
      pstatus = pattern_fixed_prefix(patt, Pattern_Type_Regex_IC, expr_coll,
3494
1
                       &prefix, NULL);
3495
1
      isIndexable = (pstatus != Pattern_Prefix_None);
3496
1
      break;
3497
3498
0
    case OID_INET_SUB_OP:
3499
0
    case OID_INET_SUBEQ_OP:
3500
0
      isIndexable = true;
3501
0
      break;
3502
14.1k
  }
3503
3504
14.1k
  if (prefix)
3505
294
  {
3506
294
    pfree(DatumGetPointer(prefix->constvalue));
3507
294
    pfree(prefix);
3508
294
  }
3509
3510
  /* done if the expression doesn't look indexable */
3511
14.1k
  if (!isIndexable)
3512
13.8k
    return false;
3513
3514
  /*
3515
   * Must also check that index's opfamily supports the operators we will
3516
   * want to apply.  (A hash index, for example, will not support ">=".)
3517
   * Currently, only btree, lsm and spgist support the operators we need.
3518
   *
3519
   * Note: actually, in the Pattern_Prefix_Exact case, we only need "=" so a
3520
   * hash index would work.  Currently it doesn't seem worth checking for
3521
   * that, however.
3522
   *
3523
   * We insist on the opfamily being the specific one we expect, else we'd
3524
   * do the wrong thing if someone were to make a reverse-sort opfamily with
3525
   * the same operators.
3526
   *
3527
   * The non-pattern opclasses will not sort the way we need in most non-C
3528
   * locales.  We can use such an index anyway for an exact match (simple
3529
   * equality), but not for prefix-match cases.  Note that here we are
3530
   * looking at the index's collation, not the expression's collation --
3531
   * this test is *not* dependent on the LIKE/regex operator's collation.
3532
   */
3533
284
  switch (expr_op)
3534
284
  {
3535
20
    case OID_TEXT_LIKE_OP:
3536
20
    case OID_TEXT_ICLIKE_OP:
3537
20
    case OID_TEXT_REGEXEQ_OP:
3538
20
    case OID_TEXT_ICREGEXEQ_OP:
3539
20
      isIndexable =
3540
20
        (opfamily == TEXT_PATTERN_BTREE_FAM_OID) ||
3541
20
        (opfamily == TEXT_PATTERN_LSM_FAM_OID) ||
3542
20
        (opfamily == TEXT_SPGIST_FAM_OID) ||
3543
20
        ((opfamily == TEXT_BTREE_FAM_OID ||
3544
20
          opfamily == TEXT_LSM_FAM_OID) &&
3545
20
         (pstatus == Pattern_Prefix_Exact ||
3546
20
          
lc_collate_is_c(idxcollation)0
));
3547
20
      break;
3548
3549
0
    case OID_BPCHAR_LIKE_OP:
3550
0
    case OID_BPCHAR_ICLIKE_OP:
3551
0
    case OID_BPCHAR_REGEXEQ_OP:
3552
0
    case OID_BPCHAR_ICREGEXEQ_OP:
3553
0
      isIndexable =
3554
0
        (opfamily == BPCHAR_PATTERN_BTREE_FAM_OID) ||
3555
0
        (opfamily == BPCHAR_PATTERN_LSM_FAM_OID) ||
3556
0
        ((opfamily == BPCHAR_BTREE_FAM_OID ||
3557
0
          opfamily == BPCHAR_LSM_FAM_OID) &&
3558
0
         (pstatus == Pattern_Prefix_Exact ||
3559
0
          lc_collate_is_c(idxcollation)));
3560
0
      break;
3561
3562
40
    case OID_NAME_LIKE_OP:
3563
40
    case OID_NAME_ICLIKE_OP:
3564
264
    case OID_NAME_REGEXEQ_OP:
3565
264
    case OID_NAME_ICREGEXEQ_OP:
3566
      /* name uses locale-insensitive sorting */
3567
264
      isIndexable = (opfamily == NAME_BTREE_FAM_OID || opfamily == NAME_LSM_FAM_OID);
3568
264
      break;
3569
3570
0
    case OID_BYTEA_LIKE_OP:
3571
0
      isIndexable = (opfamily == BYTEA_BTREE_FAM_OID || opfamily == BYTEA_LSM_FAM_OID);
3572
0
      break;
3573
3574
0
    case OID_INET_SUB_OP:
3575
0
    case OID_INET_SUBEQ_OP:
3576
0
      isIndexable = (opfamily == NETWORK_BTREE_FAM_OID || opfamily == NETWORK_LSM_FAM_OID);
3577
0
      break;
3578
284
  }
3579
3580
284
  return isIndexable;
3581
284
}
3582
3583
/*
3584
 * expand_indexqual_conditions
3585
 *    Given a list of RestrictInfo nodes, produce a list of directly usable
3586
 *    index qual clauses.
3587
 *
3588
 * Standard qual clauses (those in the index's opfamily) are passed through
3589
 * unchanged.  Boolean clauses and "special" index operators are expanded
3590
 * into clauses that the indexscan machinery will know what to do with.
3591
 * RowCompare clauses are simplified if necessary to create a clause that is
3592
 * fully checkable by the index.
3593
 *
3594
 * In addition to the expressions themselves, there are auxiliary lists
3595
 * of the index column numbers that the clauses are meant to be used with;
3596
 * we generate an updated column number list for the result.  (This is not
3597
 * the identical list because one input clause sometimes produces more than
3598
 * one output clause.)
3599
 *
3600
 * The input clauses are sorted by column number, and so the output is too.
3601
 * (This is depended on in various places in both planner and executor.)
3602
 */
3603
void
3604
expand_indexqual_conditions(IndexOptInfo *index,
3605
              List *indexclauses, List *indexclausecols,
3606
              List **indexquals_p, List **indexqualcols_p)
3607
124k
{
3608
124k
  List     *indexquals = NIL;
3609
124k
  List     *indexqualcols = NIL;
3610
124k
  ListCell   *lcc,
3611
124k
         *lci;
3612
3613
124k
  forboth(lcc, indexclauses, lci, indexclausecols)
3614
120k
  {
3615
120k
    RestrictInfo *rinfo = (RestrictInfo *) lfirst(lcc);
3616
120k
    int     indexcol = lfirst_int(lci);
3617
120k
    Expr     *clause = rinfo->clause;
3618
120k
    Oid     curFamily;
3619
120k
    Oid     curCollation;
3620
3621
120k
    Assert(indexcol < index->nkeycolumns);
3622
3623
120k
    curFamily = index->opfamily[indexcol];
3624
120k
    curCollation = index->indexcollations[indexcol];
3625
3626
    /* First check for boolean cases */
3627
120k
    if (IsBooleanOpfamily(curFamily))
3628
0
    {
3629
0
      Expr     *boolqual;
3630
3631
0
      boolqual = expand_boolean_index_clause((Node *) clause,
3632
0
                           indexcol,
3633
0
                           index);
3634
0
      if (boolqual)
3635
0
      {
3636
0
        indexquals = lappend(indexquals,
3637
0
                   make_simple_restrictinfo(boolqual));
3638
0
        indexqualcols = lappend_int(indexqualcols, indexcol);
3639
0
        continue;
3640
0
      }
3641
0
    }
3642
3643
    /*
3644
     * Else it must be an opclause (usual case), ScalarArrayOp,
3645
     * RowCompare, or NullTest
3646
     */
3647
120k
    if (is_opclause(clause))
3648
65.0k
    {
3649
65.0k
      indexquals = list_concat(indexquals,
3650
65.0k
                   expand_indexqual_opclause(rinfo,
3651
65.0k
                                 curFamily,
3652
65.0k
                                 curCollation));
3653
      /* expand_indexqual_opclause can produce multiple clauses */
3654
130k
      while (list_length(indexqualcols) < list_length(indexquals))
3655
65.0k
        indexqualcols = lappend_int(indexqualcols, indexcol);
3656
65.0k
    }
3657
55.0k
    else if (IsA(clause, ScalarArrayOpExpr))
3658
54.7k
    {
3659
      /* no extra work at this time */
3660
54.7k
      indexquals = lappend(indexquals, rinfo);
3661
54.7k
      indexqualcols = lappend_int(indexqualcols, indexcol);
3662
54.7k
    }
3663
297
    else if (IsA(clause, RowCompareExpr))
3664
211
    {
3665
211
      indexquals = lappend(indexquals,
3666
211
                 expand_indexqual_rowcompare(rinfo,
3667
211
                               index,
3668
211
                               indexcol));
3669
211
      indexqualcols = lappend_int(indexqualcols, indexcol);
3670
211
    }
3671
86
    else if (IsA(clause, NullTest))
3672
128
    {
3673
128
      Assert(index->amsearchnulls);
3674
128
      indexquals = lappend(indexquals, rinfo);
3675
128
      indexqualcols = lappend_int(indexqualcols, indexcol);
3676
128
    }
3677
18.4E
    else
3678
18.4E
      elog(ERROR, "unsupported indexqual type: %d",
3679
120k
         (int) nodeTag(clause));
3680
120k
  }
3681
3682
124k
  *indexquals_p = indexquals;
3683
124k
  *indexqualcols_p = indexqualcols;
3684
124k
}
3685
3686
/*
3687
 * expand_boolean_index_clause
3688
 *    Convert a clause recognized by match_boolean_index_clause into
3689
 *    a boolean equality operator clause.
3690
 *
3691
 * Returns NULL if the clause isn't a boolean index qual.
3692
 */
3693
static Expr *
3694
expand_boolean_index_clause(Node *clause,
3695
              int indexcol,
3696
              IndexOptInfo *index)
3697
0
{
3698
  /* Direct match? */
3699
0
  if (match_index_to_operand(clause, indexcol, index))
3700
0
  {
3701
    /* convert to indexkey = TRUE */
3702
0
    return make_opclause(BooleanEqualOperator, BOOLOID, false,
3703
0
               (Expr *) clause,
3704
0
               (Expr *) makeBoolConst(true, false),
3705
0
               InvalidOid, InvalidOid);
3706
0
  }
3707
  /* NOT clause? */
3708
0
  if (not_clause(clause))
3709
0
  {
3710
0
    Node     *arg = (Node *) get_notclausearg((Expr *) clause);
3711
3712
    /* It must have matched the indexkey */
3713
0
    Assert(match_index_to_operand(arg, indexcol, index));
3714
    /* convert to indexkey = FALSE */
3715
0
    return make_opclause(BooleanEqualOperator, BOOLOID, false,
3716
0
               (Expr *) arg,
3717
0
               (Expr *) makeBoolConst(false, false),
3718
0
               InvalidOid, InvalidOid);
3719
0
  }
3720
0
  if (clause && IsA(clause, BooleanTest))
3721
0
  {
3722
0
    BooleanTest *btest = (BooleanTest *) clause;
3723
0
    Node     *arg = (Node *) btest->arg;
3724
3725
    /* It must have matched the indexkey */
3726
0
    Assert(match_index_to_operand(arg, indexcol, index));
3727
0
    if (btest->booltesttype == IS_TRUE)
3728
0
    {
3729
      /* convert to indexkey = TRUE */
3730
0
      return make_opclause(BooleanEqualOperator, BOOLOID, false,
3731
0
                 (Expr *) arg,
3732
0
                 (Expr *) makeBoolConst(true, false),
3733
0
                 InvalidOid, InvalidOid);
3734
0
    }
3735
0
    if (btest->booltesttype == IS_FALSE)
3736
0
    {
3737
      /* convert to indexkey = FALSE */
3738
0
      return make_opclause(BooleanEqualOperator, BOOLOID, false,
3739
0
                 (Expr *) arg,
3740
0
                 (Expr *) makeBoolConst(false, false),
3741
0
                 InvalidOid, InvalidOid);
3742
0
    }
3743
    /* Oops */
3744
0
    Assert(false);
3745
0
  }
3746
3747
0
  return NULL;
3748
0
}
3749
3750
/*
3751
 * expand_indexqual_opclause --- expand a single indexqual condition
3752
 *    that is an operator clause
3753
 *
3754
 * The input is a single RestrictInfo, the output a list of RestrictInfos.
3755
 *
3756
 * In the base case this is just list_make1(), but we have to be prepared to
3757
 * expand special cases that were accepted by match_special_index_operator().
3758
 */
3759
static List *
3760
expand_indexqual_opclause(RestrictInfo *rinfo, Oid opfamily, Oid idxcollation)
3761
65.0k
{
3762
65.0k
  Expr     *clause = rinfo->clause;
3763
3764
  /* we know these will succeed */
3765
65.0k
  Node     *leftop = get_leftop(clause);
3766
65.0k
  Node     *rightop = get_rightop(clause);
3767
65.0k
  Oid     expr_op = ((OpExpr *) clause)->opno;
3768
65.0k
  Oid     expr_coll = ((OpExpr *) clause)->inputcollid;
3769
65.0k
  Const    *patt = (Const *) rightop;
3770
65.0k
  Const    *prefix = NULL;
3771
65.0k
  Pattern_Prefix_Status pstatus;
3772
3773
  /*
3774
   * LIKE and regex operators are not members of any btree index opfamily,
3775
   * but they can be members of opfamilies for more exotic index types such
3776
   * as GIN.  Therefore, we should only do expansion if the operator is
3777
   * actually not in the opfamily.  But checking that requires a syscache
3778
   * lookup, so it's best to first see if the operator is one we are
3779
   * interested in.
3780
   */
3781
65.0k
  switch (expr_op)
3782
65.0k
  {
3783
26
    case OID_TEXT_LIKE_OP:
3784
26
    case OID_BPCHAR_LIKE_OP:
3785
67
    case OID_NAME_LIKE_OP:
3786
67
    case OID_BYTEA_LIKE_OP:
3787
67
      if (!op_in_opfamily(expr_op, opfamily))
3788
61
      {
3789
61
        pstatus = pattern_fixed_prefix(patt, Pattern_Type_Like, expr_coll,
3790
61
                         &prefix, NULL);
3791
61
        return prefix_quals(leftop, opfamily, idxcollation, prefix, pstatus);
3792
61
      }
3793
6
      break;
3794
3795
6
    
case 3
OID_TEXT_ICLIKE_OP3
:
3796
3
    case OID_BPCHAR_ICLIKE_OP:
3797
3
    case OID_NAME_ICLIKE_OP:
3798
3
      if (!op_in_opfamily(expr_op, opfamily))
3799
0
      {
3800
        /* the right-hand const is type text for all of these */
3801
0
        pstatus = pattern_fixed_prefix(patt, Pattern_Type_Like_IC, expr_coll,
3802
0
                         &prefix, NULL);
3803
0
        return prefix_quals(leftop, opfamily, idxcollation, prefix, pstatus);
3804
0
      }
3805
3
      break;
3806
3807
15
    case OID_TEXT_REGEXEQ_OP:
3808
15
    case OID_BPCHAR_REGEXEQ_OP:
3809
262
    case OID_NAME_REGEXEQ_OP:
3810
262
      if (!op_in_opfamily(expr_op, opfamily))
3811
247
      {
3812
        /* the right-hand const is type text for all of these */
3813
247
        pstatus = pattern_fixed_prefix(patt, Pattern_Type_Regex, expr_coll,
3814
247
                         &prefix, NULL);
3815
247
        return prefix_quals(leftop, opfamily, idxcollation, prefix, pstatus);
3816
247
      }
3817
15
      break;
3818
3819
15
    
case 7
OID_TEXT_ICREGEXEQ_OP7
:
3820
7
    case OID_BPCHAR_ICREGEXEQ_OP:
3821
7
    case OID_NAME_ICREGEXEQ_OP:
3822
7
      if (!op_in_opfamily(expr_op, opfamily))
3823
0
      {
3824
        /* the right-hand const is type text for all of these */
3825
0
        pstatus = pattern_fixed_prefix(patt, Pattern_Type_Regex_IC, expr_coll,
3826
0
                         &prefix, NULL);
3827
0
        return prefix_quals(leftop, opfamily, idxcollation, prefix, pstatus);
3828
0
      }
3829
7
      break;
3830
3831
7
    
case 0
OID_INET_SUB_OP0
:
3832
0
    case OID_INET_SUBEQ_OP:
3833
0
      if (!op_in_opfamily(expr_op, opfamily))
3834
0
      {
3835
0
        return network_prefix_quals(leftop, expr_op, opfamily,
3836
0
                      patt->constvalue);
3837
0
      }
3838
0
      break;
3839
65.0k
  }
3840
3841
  /* Default case: just make a list of the unmodified indexqual */
3842
64.7k
  return list_make1(rinfo);
3843
65.0k
}
3844
3845
/*
3846
 * expand_indexqual_rowcompare --- expand a single indexqual condition
3847
 *    that is a RowCompareExpr
3848
 *
3849
 * This is a thin wrapper around adjust_rowcompare_for_index; we export the
3850
 * latter so that createplan.c can use it to re-discover which columns of the
3851
 * index are used by a row comparison indexqual.
3852
 */
3853
static RestrictInfo *
3854
expand_indexqual_rowcompare(RestrictInfo *rinfo,
3855
              IndexOptInfo *index,
3856
              int indexcol)
3857
211
{
3858
211
  RowCompareExpr *clause = (RowCompareExpr *) rinfo->clause;
3859
211
  Expr     *newclause;
3860
211
  List     *indexcolnos;
3861
211
  bool    var_on_left;
3862
3863
211
  newclause = adjust_rowcompare_for_index(clause,
3864
211
                      index,
3865
211
                      indexcol,
3866
211
                      &indexcolnos,
3867
211
                      &var_on_left);
3868
3869
  /*
3870
   * If we didn't have to change the RowCompareExpr, return the original
3871
   * RestrictInfo.
3872
   */
3873
211
  if (newclause == (Expr *) clause)
3874
196
    return rinfo;
3875
3876
  /* Else we need a new RestrictInfo */
3877
15
  return make_simple_restrictinfo(newclause);
3878
211
}
3879
3880
/*
3881
 * adjust_rowcompare_for_index --- expand a single indexqual condition
3882
 *    that is a RowCompareExpr
3883
 *
3884
 * It's already known that the first column of the row comparison matches
3885
 * the specified column of the index.  We can use additional columns of the
3886
 * row comparison as index qualifications, so long as they match the index
3887
 * in the "same direction", ie, the indexkeys are all on the same side of the
3888
 * clause and the operators are all the same-type members of the opfamilies.
3889
 * If all the columns of the RowCompareExpr match in this way, we just use it
3890
 * as-is.  Otherwise, we build a shortened RowCompareExpr (if more than one
3891
 * column matches) or a simple OpExpr (if the first-column match is all
3892
 * there is).  In these cases the modified clause is always "<=" or ">="
3893
 * even when the original was "<" or ">" --- this is necessary to match all
3894
 * the rows that could match the original.  (We are essentially building a
3895
 * lossy version of the row comparison when we do this.)
3896
 *
3897
 * *indexcolnos receives an integer list of the index column numbers (zero
3898
 * based) used in the resulting expression.  The reason we need to return
3899
 * that is that if the index is selected for use, createplan.c will need to
3900
 * call this again to extract that list.  (This is a bit grotty, but row
3901
 * comparison indexquals aren't used enough to justify finding someplace to
3902
 * keep the information in the Path representation.)  Since createplan.c
3903
 * also needs to know which side of the RowCompareExpr is the index side,
3904
 * we also return *var_on_left_p rather than re-deducing that there.
3905
 */
3906
Expr *
3907
adjust_rowcompare_for_index(RowCompareExpr *clause,
3908
              IndexOptInfo *index,
3909
              int indexcol,
3910
              List **indexcolnos,
3911
              bool *var_on_left_p)
3912
392
{
3913
392
  bool    var_on_left;
3914
392
  int     op_strategy;
3915
392
  Oid     op_lefttype;
3916
392
  Oid     op_righttype;
3917
392
  int     matching_cols;
3918
392
  Oid     expr_op;
3919
392
  List     *opfamilies;
3920
392
  List     *lefttypes;
3921
392
  List     *righttypes;
3922
392
  List     *new_ops;
3923
392
  ListCell   *largs_cell;
3924
392
  ListCell   *rargs_cell;
3925
392
  ListCell   *opnos_cell;
3926
392
  ListCell   *collids_cell;
3927
3928
  /* We have to figure out (again) how the first col matches */
3929
392
  var_on_left = match_index_to_operand((Node *) linitial(clause->largs),
3930
392
                     indexcol, index);
3931
392
  Assert(var_on_left ||
3932
392
       match_index_to_operand((Node *) linitial(clause->rargs),
3933
392
                  indexcol, index));
3934
392
  *var_on_left_p = var_on_left;
3935
3936
392
  expr_op = linitial_oid(clause->opnos);
3937
392
  if (!var_on_left)
3938
0
    expr_op = get_commutator(expr_op);
3939
392
  get_op_opfamily_properties(expr_op, index->opfamily[indexcol], false,
3940
392
                 &op_strategy,
3941
392
                 &op_lefttype,
3942
392
                 &op_righttype);
3943
3944
  /* Initialize returned list of which index columns are used */
3945
392
  *indexcolnos = list_make1_int(indexcol);
3946
3947
  /* Build lists of the opfamilies and operator datatypes in case needed */
3948
392
  opfamilies = list_make1_oid(index->opfamily[indexcol]);
3949
392
  lefttypes = list_make1_oid(op_lefttype);
3950
392
  righttypes = list_make1_oid(op_righttype);
3951
3952
  /*
3953
   * See how many of the remaining columns match some index column in the
3954
   * same way.  As in match_clause_to_indexcol(), the "other" side of any
3955
   * potential index condition is OK as long as it doesn't use Vars from the
3956
   * indexed relation.
3957
   */
3958
392
  matching_cols = 1;
3959
392
  largs_cell = lnext(list_head(clause->largs));
3960
392
  rargs_cell = lnext(list_head(clause->rargs));
3961
392
  opnos_cell = lnext(list_head(clause->opnos));
3962
392
  collids_cell = lnext(list_head(clause->inputcollids));
3963
3964
1.04k
  while (largs_cell != NULL)
3965
668
  {
3966
668
    Node     *varop;
3967
668
    Node     *constop;
3968
668
    int     i;
3969
3970
668
    expr_op = lfirst_oid(opnos_cell);
3971
668
    if (var_on_left)
3972
668
    {
3973
668
      varop = (Node *) lfirst(largs_cell);
3974
668
      constop = (Node *) lfirst(rargs_cell);
3975
668
    }
3976
0
    else
3977
0
    {
3978
0
      varop = (Node *) lfirst(rargs_cell);
3979
0
      constop = (Node *) lfirst(largs_cell);
3980
      /* indexkey is on right, so commute the operator */
3981
0
      expr_op = get_commutator(expr_op);
3982
0
      if (expr_op == InvalidOid)
3983
0
        break;     /* operator is not usable */
3984
0
    }
3985
668
    if (bms_is_member(index->rel->relid, pull_varnos(constop)))
3986
0
      break;       /* no good, Var on wrong side */
3987
668
    if (contain_volatile_functions(constop))
3988
0
      break;       /* no good, volatile comparison value */
3989
3990
    /*
3991
     * The Var side can match any key column of the index.
3992
     */
3993
1.65k
    
for (i = 0; 668
i < index->nkeycolumns;
i++986
)
3994
1.63k
    {
3995
1.63k
      if (match_index_to_operand(varop, i, index) &&
3996
1.63k
        get_op_opfamily_strategy(expr_op,
3997
653
                     index->opfamily[i]) == op_strategy &&
3998
1.63k
        
IndexCollMatchesExprColl653
(index->indexcollations[i],
3999
1.63k
                     lfirst_oid(collids_cell)))
4000
4001
653
        break;
4002
1.63k
    }
4003
668
    if (i >= index->nkeycolumns)
4004
15
      break;        /* no match found */
4005
4006
    /* Add column number to returned list */
4007
653
    *indexcolnos = lappend_int(*indexcolnos, i);
4008
4009
    /* Add opfamily and datatypes to lists */
4010
653
    get_op_opfamily_properties(expr_op, index->opfamily[i], false,
4011
653
                   &op_strategy,
4012
653
                   &op_lefttype,
4013
653
                   &op_righttype);
4014
653
    opfamilies = lappend_oid(opfamilies, index->opfamily[i]);
4015
653
    lefttypes = lappend_oid(lefttypes, op_lefttype);
4016
653
    righttypes = lappend_oid(righttypes, op_righttype);
4017
4018
    /* This column matches, keep scanning */
4019
653
    matching_cols++;
4020
653
    largs_cell = lnext(largs_cell);
4021
653
    rargs_cell = lnext(rargs_cell);
4022
653
    opnos_cell = lnext(opnos_cell);
4023
653
    collids_cell = lnext(collids_cell);
4024
653
  }
4025
4026
  /* Return clause as-is if it's all usable as index quals */
4027
392
  if (matching_cols == list_length(clause->opnos))
4028
377
    return (Expr *) clause;
4029
4030
  /*
4031
   * We have to generate a subset rowcompare (possibly just one OpExpr). The
4032
   * painful part of this is changing < to <= or > to >=, so deal with that
4033
   * first.
4034
   */
4035
15
  if (op_strategy == BTLessEqualStrategyNumber ||
4036
15
    
op_strategy == 5
BTGreaterEqualStrategyNumber5
)
4037
10
  {
4038
    /* easy, just use the same operators */
4039
10
    new_ops = list_truncate(list_copy(clause->opnos), matching_cols);
4040
10
  }
4041
5
  else
4042
5
  {
4043
5
    ListCell   *opfamilies_cell;
4044
5
    ListCell   *lefttypes_cell;
4045
5
    ListCell   *righttypes_cell;
4046
4047
5
    if (op_strategy == BTLessStrategyNumber)
4048
5
      op_strategy = BTLessEqualStrategyNumber;
4049
0
    else if (op_strategy == BTGreaterStrategyNumber)
4050
0
      op_strategy = BTGreaterEqualStrategyNumber;
4051
0
    else
4052
0
      elog(ERROR, "unexpected strategy number %d", op_strategy);
4053
5
    new_ops = NIL;
4054
5
    lefttypes_cell = list_head(lefttypes);
4055
5
    righttypes_cell = list_head(righttypes);
4056
5
    foreach(opfamilies_cell, opfamilies)
4057
7
    {
4058
7
      Oid     opfam = lfirst_oid(opfamilies_cell);
4059
7
      Oid     lefttype = lfirst_oid(lefttypes_cell);
4060
7
      Oid     righttype = lfirst_oid(righttypes_cell);
4061
4062
7
      expr_op = get_opfamily_member(opfam, lefttype, righttype,
4063
7
                      op_strategy);
4064
7
      if (!OidIsValid(expr_op))  /* should not happen */
4065
0
        elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
4066
7
           op_strategy, lefttype, righttype, opfam);
4067
7
      if (!var_on_left)
4068
0
      {
4069
0
        expr_op = get_commutator(expr_op);
4070
0
        if (!OidIsValid(expr_op))  /* should not happen */
4071
0
          elog(ERROR, "could not find commutator of operator %d(%u,%u) of opfamily %u",
4072
0
             op_strategy, lefttype, righttype, opfam);
4073
0
      }
4074
7
      new_ops = lappend_oid(new_ops, expr_op);
4075
7
      lefttypes_cell = lnext(lefttypes_cell);
4076
7
      righttypes_cell = lnext(righttypes_cell);
4077
7
    }
4078
5
  }
4079
4080
  /* If we have more than one matching col, create a subset rowcompare */
4081
15
  if (matching_cols > 1)
4082
12
  {
4083
12
    RowCompareExpr *rc = makeNode(RowCompareExpr);
4084
4085
12
    if (var_on_left)
4086
12
      rc->rctype = (RowCompareType) op_strategy;
4087
0
    else
4088
0
      rc->rctype = (op_strategy == BTLessEqualStrategyNumber) ?
4089
0
        ROWCOMPARE_GE : ROWCOMPARE_LE;
4090
12
    rc->opnos = new_ops;
4091
12
    rc->opfamilies = list_truncate(list_copy(clause->opfamilies),
4092
12
                     matching_cols);
4093
12
    rc->inputcollids = list_truncate(list_copy(clause->inputcollids),
4094
12
                     matching_cols);
4095
12
    rc->largs = list_truncate(copyObject(clause->largs),
4096
12
                  matching_cols);
4097
12
    rc->rargs = list_truncate(copyObject(clause->rargs),
4098
12
                  matching_cols);
4099
12
    return (Expr *) rc;
4100
12
  }
4101
3
  else
4102
3
  {
4103
3
    return make_opclause(linitial_oid(new_ops), BOOLOID, false,
4104
3
               copyObject(linitial(clause->largs)),
4105
3
               copyObject(linitial(clause->rargs)),
4106
3
               InvalidOid,
4107
3
               linitial_oid(clause->inputcollids));
4108
3
  }
4109
15
}
4110
4111
/*
4112
 * Given a fixed prefix that all the "leftop" values must have,
4113
 * generate suitable indexqual condition(s).  opfamily is the index
4114
 * operator family; we use it to deduce the appropriate comparison
4115
 * operators and operand datatypes.  collation is the input collation to use.
4116
 */
4117
static List *
4118
prefix_quals(Node *leftop, Oid opfamily, Oid collation,
4119
       Const *prefix_const, Pattern_Prefix_Status pstatus)
4120
308
{
4121
308
  List     *result;
4122
308
  Oid     datatype;
4123
308
  Oid     oproid;
4124
308
  Expr     *expr;
4125
308
  FmgrInfo  ltproc;
4126
308
  Const    *greaterstr;
4127
4128
308
  Assert(pstatus != Pattern_Prefix_None);
4129
4130
308
  switch (opfamily)
4131
308
  {
4132
0
    case TEXT_BTREE_FAM_OID:
4133
20
    case TEXT_LSM_FAM_OID:
4134
20
    case TEXT_PATTERN_BTREE_FAM_OID:
4135
20
    case TEXT_PATTERN_LSM_FAM_OID:
4136
20
    case TEXT_SPGIST_FAM_OID:
4137
20
      datatype = TEXTOID;
4138
20
      break;
4139
4140
0
    case BPCHAR_BTREE_FAM_OID:
4141
0
    case BPCHAR_LSM_FAM_OID:
4142
0
    case BPCHAR_PATTERN_BTREE_FAM_OID:
4143
0
    case BPCHAR_PATTERN_LSM_FAM_OID:
4144
0
      datatype = BPCHAROID;
4145
0
      break;
4146
4147
0
    case NAME_BTREE_FAM_OID:
4148
288
    case NAME_LSM_FAM_OID:
4149
288
      datatype = NAMEOID;
4150
288
      break;
4151
4152
0
    case BYTEA_BTREE_FAM_OID:
4153
0
    case BYTEA_LSM_FAM_OID:
4154
0
      datatype = BYTEAOID;
4155
0
      break;
4156
4157
0
    default:
4158
      /* shouldn't get here */
4159
0
      elog(ERROR, "unexpected opfamily: %u", opfamily);
4160
0
      return NIL;
4161
308
  }
4162
4163
  /*
4164
   * If necessary, coerce the prefix constant to the right type. The given
4165
   * prefix constant is either text or bytea type.
4166
   */
4167
308
  if (prefix_const->consttype != datatype)
4168
288
  {
4169
288
    char     *prefix;
4170
4171
288
    switch (prefix_const->consttype)
4172
288
    {
4173
288
      case TEXTOID:
4174
288
        prefix = TextDatumGetCString(prefix_const->constvalue);
4175
288
        break;
4176
0
      case BYTEAOID:
4177
0
        prefix = DatumGetCString(DirectFunctionCall1(byteaout,
4178
0
                               prefix_const->constvalue));
4179
0
        break;
4180
0
      default:
4181
0
        elog(ERROR, "unexpected const type: %u",
4182
0
           prefix_const->consttype);
4183
0
        return NIL;
4184
288
    }
4185
288
    prefix_const = string_to_const(prefix, datatype);
4186
288
    pfree(prefix);
4187
288
  }
4188
4189
  /*
4190
   * If we found an exact-match pattern, generate an "=" indexqual.
4191
   */
4192
308
  if (pstatus == Pattern_Prefix_Exact)
4193
266
  {
4194
266
    oproid = get_opfamily_member(opfamily, datatype, datatype,
4195
266
                   BTEqualStrategyNumber);
4196
266
    if (oproid == InvalidOid)
4197
0
      elog(ERROR, "no = operator for opfamily %u", opfamily);
4198
266
    expr = make_opclause(oproid, BOOLOID, false,
4199
266
               (Expr *) leftop, (Expr *) prefix_const,
4200
266
               InvalidOid, collation);
4201
266
    result = list_make1(make_simple_restrictinfo(expr));
4202
266
    return result;
4203
266
  }
4204
4205
  /*
4206
   * Otherwise, we have a nonempty required prefix of the values.
4207
   *
4208
   * We can always say "x >= prefix".
4209
   */
4210
42
  oproid = get_opfamily_member(opfamily, datatype, datatype,
4211
42
                 BTGreaterEqualStrategyNumber);
4212
42
  if (oproid == InvalidOid)
4213
0
    elog(ERROR, "no >= operator for opfamily %u", opfamily);
4214
42
  expr = make_opclause(oproid, BOOLOID, false,
4215
42
             (Expr *) leftop, (Expr *) prefix_const,
4216
42
             InvalidOid, collation);
4217
42
  result = list_make1(make_simple_restrictinfo(expr));
4218
4219
  /*-------
4220
   * If we can create a string larger than the prefix, we can say
4221
   * "x < greaterstr".  NB: we rely on make_greater_string() to generate
4222
   * a guaranteed-greater string, not just a probably-greater string.
4223
   * In general this is only guaranteed in C locale, so we'd better be
4224
   * using a C-locale index collation.
4225
   *-------
4226
   */
4227
42
  oproid = get_opfamily_member(opfamily, datatype, datatype,
4228
42
                 BTLessStrategyNumber);
4229
42
  if (oproid == InvalidOid)
4230
0
    elog(ERROR, "no < operator for opfamily %u", opfamily);
4231
42
  fmgr_info(get_opcode(oproid), &ltproc);
4232
42
  greaterstr = make_greater_string(prefix_const, &ltproc, collation);
4233
42
  if (greaterstr)
4234
42
  {
4235
42
    expr = make_opclause(oproid, BOOLOID, false,
4236
42
               (Expr *) leftop, (Expr *) greaterstr,
4237
42
               InvalidOid, collation);
4238
42
    result = lappend(result, make_simple_restrictinfo(expr));
4239
42
  }
4240
4241
42
  return result;
4242
42
}
4243
4244
/*
4245
 * Given a leftop and a rightop, and an inet-family sup/sub operator,
4246
 * generate suitable indexqual condition(s).  expr_op is the original
4247
 * operator, and opfamily is the index opfamily.
4248
 */
4249
static List *
4250
network_prefix_quals(Node *leftop, Oid expr_op, Oid opfamily, Datum rightop)
4251
0
{
4252
0
  bool    is_eq;
4253
0
  Oid     datatype;
4254
0
  Oid     opr1oid;
4255
0
  Oid     opr2oid;
4256
0
  Datum   opr1right;
4257
0
  Datum   opr2right;
4258
0
  List     *result;
4259
0
  Expr     *expr;
4260
4261
0
  switch (expr_op)
4262
0
  {
4263
0
    case OID_INET_SUB_OP:
4264
0
      datatype = INETOID;
4265
0
      is_eq = false;
4266
0
      break;
4267
0
    case OID_INET_SUBEQ_OP:
4268
0
      datatype = INETOID;
4269
0
      is_eq = true;
4270
0
      break;
4271
0
    default:
4272
0
      elog(ERROR, "unexpected operator: %u", expr_op);
4273
0
      return NIL;
4274
0
  }
4275
4276
  /*
4277
   * create clause "key >= network_scan_first( rightop )", or ">" if the
4278
   * operator disallows equality.
4279
   */
4280
0
  if (is_eq)
4281
0
  {
4282
0
    opr1oid = get_opfamily_member(opfamily, datatype, datatype,
4283
0
                    BTGreaterEqualStrategyNumber);
4284
0
    if (opr1oid == InvalidOid)
4285
0
      elog(ERROR, "no >= operator for opfamily %u", opfamily);
4286
0
  }
4287
0
  else
4288
0
  {
4289
0
    opr1oid = get_opfamily_member(opfamily, datatype, datatype,
4290
0
                    BTGreaterStrategyNumber);
4291
0
    if (opr1oid == InvalidOid)
4292
0
      elog(ERROR, "no > operator for opfamily %u", opfamily);
4293
0
  }
4294
4295
0
  opr1right = network_scan_first(rightop);
4296
4297
0
  expr = make_opclause(opr1oid, BOOLOID, false,
4298
0
             (Expr *) leftop,
4299
0
             (Expr *) makeConst(datatype, -1,
4300
0
                      InvalidOid, /* not collatable */
4301
0
                      -1, opr1right,
4302
0
                      false, false),
4303
0
             InvalidOid, InvalidOid);
4304
0
  result = list_make1(make_simple_restrictinfo(expr));
4305
4306
  /* create clause "key <= network_scan_last( rightop )" */
4307
4308
0
  opr2oid = get_opfamily_member(opfamily, datatype, datatype,
4309
0
                  BTLessEqualStrategyNumber);
4310
0
  if (opr2oid == InvalidOid)
4311
0
    elog(ERROR, "no <= operator for opfamily %u", opfamily);
4312
4313
0
  opr2right = network_scan_last(rightop);
4314
4315
0
  expr = make_opclause(opr2oid, BOOLOID, false,
4316
0
             (Expr *) leftop,
4317
0
             (Expr *) makeConst(datatype, -1,
4318
0
                      InvalidOid, /* not collatable */
4319
0
                      -1, opr2right,
4320
0
                      false, false),
4321
0
             InvalidOid, InvalidOid);
4322
0
  result = lappend(result, make_simple_restrictinfo(expr));
4323
4324
0
  return result;
4325
0
}
4326
4327
/*
4328
 * Handy subroutines for match_special_index_operator() and friends.
4329
 */
4330
4331
/*
4332
 * Generate a Datum of the appropriate type from a C string.
4333
 * Note that all of the supported types are pass-by-ref, so the
4334
 * returned value should be pfree'd if no longer needed.
4335
 */
4336
static Datum
4337
string_to_datum(const char *str, Oid datatype)
4338
288
{
4339
  /*
4340
   * We cheat a little by assuming that CStringGetTextDatum() will do for
4341
   * bpchar and varchar constants too...
4342
   */
4343
288
  if (datatype == NAMEOID)
4344
288
    return DirectFunctionCall1(namein, CStringGetDatum(str));
4345
0
  else if (datatype == BYTEAOID)
4346
0
    return DirectFunctionCall1(byteain, CStringGetDatum(str));
4347
0
  else
4348
0
    return CStringGetTextDatum(str);
4349
288
}
4350
4351
/*
4352
 * Generate a Const node of the appropriate type from a C string.
4353
 */
4354
static Const *
4355
string_to_const(const char *str, Oid datatype)
4356
288
{
4357
288
  Datum   conval = string_to_datum(str, datatype);
4358
288
  Oid     collation;
4359
288
  int     constlen;
4360
4361
  /*
4362
   * We only need to support a few datatypes here, so hard-wire properties
4363
   * instead of incurring the expense of catalog lookups.
4364
   */
4365
288
  switch (datatype)
4366
288
  {
4367
0
    case TEXTOID:
4368
0
    case VARCHAROID:
4369
0
    case BPCHAROID:
4370
0
      collation = DEFAULT_COLLATION_OID;
4371
0
      constlen = -1;
4372
0
      break;
4373
4374
288
    case NAMEOID:
4375
288
      collation = InvalidOid;
4376
288
      constlen = NAMEDATALEN;
4377
288
      break;
4378
4379
0
    case BYTEAOID:
4380
0
      collation = InvalidOid;
4381
0
      constlen = -1;
4382
0
      break;
4383
4384
0
    default:
4385
0
      elog(ERROR, "unexpected datatype in string_to_const: %u",
4386
0
         datatype);
4387
0
      return NULL;
4388
288
  }
4389
4390
288
  return makeConst(datatype, -1, collation, constlen,
4391
288
           conval, false, false);
4392
288
}